Journal of Materials Science

, Volume 42, Issue 11, pp 3724–3731 | Cite as

Volume relaxation in amorphous and semicrystalline PET



Two types of polyethyleneterephthalate (PET) were investigated, one nearly amorphous and the other highly crystallized. DSC analysis and mercury-in-glass dilatometry were used to determine the effect of crystalline phase content on the thermal behavior of amorphous phase. Increasing portion of crystals caused an increase in glass transition temperature (T g) and broadening of the transition zone. Thermal expansion coefficient and specific heat decreased. The amount of rigid amorphous fraction, RAF, was calculated to be around 21–26%. Volume relaxation measurements initiated by temperature down-jump from the equilibrium above T g to several temperatures in the vicinity of T g showed considerably reduced relaxation rate for semicrystalline PET.


Glass Transition Temperature Amorphous Phase Thermal Expansion Coefficient Ethylene Terephthalate Glass Transition Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The financial support of the Ministry of Education, Youth and Sports of the Czech Republic in the frame of project MSM7088352101 is gratefully acknowledged


  1. 1.
    Hutchinson JM (1995) Prog Polym Sci 20:703CrossRefGoogle Scholar
  2. 2.
    Haward RN, Young RJ (1997) The physics of glassy polymers. Chapman & Hall, London, p 85Google Scholar
  3. 3.
    Slobodian P, Říha P, Lengálová A, Hadač J, Sáha P, Kubát J (2004) J Non-Cryst Solids 344:148CrossRefGoogle Scholar
  4. 4.
    Liška M, Chromčíková M (2005) JTAC 81:125CrossRefGoogle Scholar
  5. 5.
    Struik LCE (1978) Physical aging of amorphous polymers and other materials. Elsevier, AmsterdamGoogle Scholar
  6. 6.
    Montserrat S, Cortes P (1995) J Mater Sci 30:1790CrossRefGoogle Scholar
  7. 7.
    Vigier G, Tatibouet J (1993) Polymer 34:4257CrossRefGoogle Scholar
  8. 8.
    Alves NM, Mano JF, Balaguer E, Meseguer Dueñas JM, Gomez Ribelles JL (2002) Polymer 43:4111CrossRefGoogle Scholar
  9. 9.
    Struik LCE (1987) Polymer 28:1521CrossRefGoogle Scholar
  10. 10.
    Struik LCE (1987) Polymer 28:1534CrossRefGoogle Scholar
  11. 11.
    Aref-Azar A, Arnoux F, Biddlestone F, Hay JN (1996) Thermochim Acta 273:217CrossRefGoogle Scholar
  12. 12.
    Fukao K, Miyamoto Y (1997) J Non-Cryst Solids 211:208CrossRefGoogle Scholar
  13. 13.
    Vigier G, Tatibouet J, Benatmane A, Vassoille R (1992) Colloid Polym Sci 270:1182CrossRefGoogle Scholar
  14. 14.
    Coburn JC, Boyd RH (1986) Macromolecules 19:2238CrossRefGoogle Scholar
  15. 15.
    Monserrat S, Colomer P, Belana J (1992) J Mater Chem 2:217CrossRefGoogle Scholar
  16. 16.
    Lin J, Shenogin S, Nazarenko S (2002) Polymer 43:4733CrossRefGoogle Scholar
  17. 17.
    Androsch R, Wunderlich B (2005) Polymer 46:12556CrossRefGoogle Scholar
  18. 18.
    Okazaki I, Wunderlich B (1996) J Polym Sci Polym Symp 34:2941Google Scholar
  19. 19.
    Zhao J, Dong W, Li C, Guo M, Fan Q (2003) Macromolecules 36:2176CrossRefGoogle Scholar
  20. 20.
    Tant MR, Wilkes GL (1981) Polym Eng Sci 21:874CrossRefGoogle Scholar
  21. 21.
    Mukherjee S, Jabarin SA (1995) Polym Eng Sci 35:1145CrossRefGoogle Scholar
  22. 22.
    Struik LCE (1987) Polymer 28:1869CrossRefGoogle Scholar
  23. 23.
    Itoyama K (2001) Nihon Reoroji Gakkaishi 29:21CrossRefGoogle Scholar
  24. 24.
    Chung HJ, Chang HI, Lim ST (2004) Carbohydr Res 58:101CrossRefGoogle Scholar
  25. 25.
    Brandrup J, Immergut EH (1989) Polymer handbook, 3rd edn. John Wiley & Sons Inc., New York, p V/101Google Scholar
  26. 26.
    Grebowicz J, Lau SF, Wunderlich BJ (1984) J Polym Sci Polym Symp 71:19CrossRefGoogle Scholar
  27. 27.
    Suzuki H, Grebowicz J, Wunderlich BJ (1985) Macromol Chem 186:1109CrossRefGoogle Scholar
  28. 28.
    Lu X, Hay JN (2000) Polymer 41:7427CrossRefGoogle Scholar
  29. 29.
    Itoyama K (1999) Nihon Reoroji Gakkaishi 27:25CrossRefGoogle Scholar
  30. 30.
    Williams G, Watts DC (1970) Trans Faraday Soc 66:80CrossRefGoogle Scholar
  31. 31.
    Greiner R, Schwarzl FR (1984) Rheol Acta 23:378CrossRefGoogle Scholar
  32. 32.
    Robertson CG, Wilkes GL (2000) Polymer 41:9191CrossRefGoogle Scholar
  33. 33.
    Slobodian P, Lengálová A, Sáha P (2004) Polym J 36:176CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Faculty of Technology, Polymer CentreTomas Bata UniversityZlínCzech Republic

Personalised recommendations