Skip to main content
Log in

Thermal expansion behaviour of ultra-high modulus carbon fibre reinforced magnesium composite during thermal cycling

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The thermally induced strain response of unidirectional P100S/AZ91D carbon fibre-reinforced magnesium composite was studied over five cycles in the ±100 °C temperature range. A temperature-dependent one-dimensional model was employed to predict the anticipated response to the cycling thermal environment. Strain hysteresis was observed during cycling and attributed to matrix yielding. First cycle residual plastic strains were modelled with reasonable agreement. Experimental results deviated from predictions during subsequent cycles with continued thermal ratcheting shifting the hysteresis loops to higher strains with increasing cycles. This was thought to be associated with interfacial debonding and frictional sliding at fibre/matrix interfaces. The effect of thermal treatment on composite expansion behaviour was investigated and the results discussed in terms of minimising thermally induced deformations during anticipated service conditions. Treatments were found to affect the first cycle behaviour, reducing in particular residual plastic strain generation. Matrix yield strength was exceeded over the thermal cycle due to a lack of sufficient hardening, and since interfacial conditions were unaltered, interfacial sliding and thermal ratcheting could not be eliminated. The potential for improvement of C/Mg composite thermal strain response was explored in the light of the current findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Maclean BJ, Misra MS (1982) In: Proc Symp Mechanical Behaviour of Metal Matrix Composites. AIME, Dallas, TX, pp 195–212

  2. Wolff EG, Kendall EG, Riley WC (1980) In: Proc 3rd Int Conf Comp Mater Paris 26–29 August. Pergamon Press, pp 1140–1152

  3. Badini C, Ferraris M, Marchetti F (1994) Mater Lett 21(1):55

    Article  CAS  Google Scholar 

  4. Wolff EG, Min BK, Kural MH (1985) J Mater Sci 20(4):1141

    Article  CAS  Google Scholar 

  5. Kural MH, Min BK (1984) J Comp Mater 18(6):519

    Article  Google Scholar 

  6. Min BK, Crossman FW (1981) In: Hahn TA (ed) Proc 8th Int Thermal Expansion Symp. National Bureau of Standards, Gaithersburg, Maryland; Plenum, New York, pp 175–188, June 1981

  7. Kiehn J, Bohm E, Kainer KU (1997) In: Proc 1st Int Conf Ceramic and Metal Matrix Composites, vol 127. pp 861–867

  8. Zhang HY, Anderson PM, Daehn GS (1994) Metall Trans A 25(2):415

    Article  Google Scholar 

  9. Armstrong JH, Rawal SP, Misra MS (1990) Mater Sci Eng A 126:119

    Article  Google Scholar 

  10. Tsai S-D, Mahulikap D, Marcus HL, Noyan IC, Cohen JB (1981) Mater Sci Eng 47:145

    Article  CAS  Google Scholar 

  11. Tompkins SS (1989) In: Johnson WS (ed) Metal matrix composites: testing, analysis, and failure modes – ASTM STP 1032. ASTM, Philadelphia, pp 54–67

  12. Tompkins SS, Sharpe GR (1986) In: Proc 18th Int SAMPE Technical Conf. SAMPE, pp 623–637

  13. Mitra S, Dutta I, Hansen RC (1991) J Mater Sci 26(22):6223

    Article  CAS  Google Scholar 

  14. Diwanji AP, Hall IW (1992) J Mater Sci 27(8):2093

    Article  CAS  Google Scholar 

  15. Caceres CH, Davidson CJ, Griffiths JR, Newton CL (2002) Mater Sci Eng A 325(1–2):344

    Article  Google Scholar 

  16. Clarke JB (1968) Acta Metall Mater 16:141

    Article  Google Scholar 

  17. Celotto S (2000) Acta Mater 48(8):1775

    Article  CAS  Google Scholar 

  18. Madgwick A, Mori T, Withers PJ, Wakashima K (2001) Mech Mater 33:493

    Article  Google Scholar 

  19. Dutta I (2000) Acta Mater 48(5):1055

    Article  CAS  Google Scholar 

  20. Russell-Stevens M, Todd RI, Papakyriacou M (2005) Mater Sci Eng A 397(1–2):249

    Article  Google Scholar 

  21. Vedula M, Pangborn RN, Queeney RA (1988) Composites 19(2):133

    Article  CAS  Google Scholar 

  22. Feldhoff A, Pippel E, Woltersdorf J (1997) J Microsc 185:122

    Article  CAS  Google Scholar 

  23. Capel H, Harris SJ, Schulz P, Kaufmann H (2000) Mater Sci Technol 16(7–8):765

    Article  CAS  Google Scholar 

  24. Wenwen D, Yangshan S, Xuegang M, Feng X, Min Z, Dengyun W (2003) Mater Sci Eng A356:1

    Article  Google Scholar 

  25. Beffort O, Hausmann C (2000) Magnesium alloys and their applications. Wiley-VCH, Munich, Germany, pp 215

    Google Scholar 

  26. Hassan SF, Gupta M (2003) Mater Sci Technol 19(2):253

    Article  CAS  Google Scholar 

  27. Hassan SF, Gupta M (2002) J Mater Sci 37(12):2467

    Article  CAS  Google Scholar 

  28. Polmear IJ (1981) Light alloys—metallurgy of the light alloys. Edward Arnold, London

    Google Scholar 

  29. Chin ESC, Nunes J (1987) J Met 39(10):A32

    Google Scholar 

  30. Hall IW (1987) Metallography 20(2):237

    Article  CAS  Google Scholar 

  31. Lin MH, Buchgraber W, Korb G, Kao PW (2002) Scr Mater 46:169

    Article  CAS  Google Scholar 

  32. Hassan SF, Ho KF, Gupta M (2004) Mater Lett 58(16):2143

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank P. Allen, Hexcel Composites, Duxford, England for kindly allowing the use of the Linseis cryogenic dilatometer and J. Reiter (LKR) for the fabrication of C/Mg specimens. Thanks are also due to P. Schulz (LKR) for his valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Russell-Stevens.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Russell-Stevens, M., Todd, R.I. & Papakyriacou, M. Thermal expansion behaviour of ultra-high modulus carbon fibre reinforced magnesium composite during thermal cycling. J Mater Sci 41, 6228–6236 (2006). https://doi.org/10.1007/s10853-006-0318-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-0318-y

Keywords

Navigation