Journal of Materials Science

, Volume 41, Issue 16, pp 5317–5322 | Cite as

Dielectric properties of BaBi2Nb2O9 ceramics

  • M. Adamczyk
  • Z. Ujma
  • M. Pawełczyk


The crystal structure and dielectric properties as a function of temperature for Ba-based with Bi-layered structure BaBi2Nb2O9 (BBN) ceramics were investigated. The obtained results confirmed the relaxor ferroelectric behavior of the studied ceramics, including a strong frequency dispersion of the permittivity maximum and a visible shift of its temperature with frequency. Analysis of the real and imaginary part of permittivity allowed us to determine the values of Burn’s temperature and of the freezing temperature characterizing the relaxor ferroelectrics. The physical processes, responsible for the relaxor behavior of the studied ceramics are discussed. The additional low frequency dielectric dispersion at high temperatures in the paraelectric phase range was also observed. Correlation between this dispersion and the thermally stimulated depolarization current was ascertained.


Perovskite Dielectric Response BaCO3 Paraelectric Phase Thermally Stimulate Depolarization Current 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Galassi C, Piazza D, Craciun F, Verardi P (2004) J Europ Ceram Soc 24:1525CrossRefGoogle Scholar
  2. 2.
    Cross LE (1994) Ferroelectrics 151:305Google Scholar
  3. 3.
    Aurivillius B (1949) Ark Kemi 1:463Google Scholar
  4. 4.
    Scott JF, Ross FM, Paz de Araujo CA, Scott MC, Huffman M (1996) MRS Bul 21:33Google Scholar
  5. 5.
    Paz de Araujo CA, Cuchiaro JD, McMillan LD, Scott MC, Scott JF (1995) Nature (London) 374:627CrossRefGoogle Scholar
  6. 6.
    Kholkin AL, Brooks KG, Setter N (1997) Appl Phys Lett 71:2044CrossRefGoogle Scholar
  7. 7.
    Scott JF (1998) Ferroelectrics Rev 1:1CrossRefGoogle Scholar
  8. 8.
    Shimakawa Y, Kubo Y, Nakagawa Y, Goto S, Kamiyama T, Asano H, Izumi F (2000) Phys Rev B 61:6559CrossRefGoogle Scholar
  9. 9.
    Hańderek J, Ujma Z, Carabatos-Nedelec C, Kugel GE, Dmytrów D, El-Harrad I (1993) J Appl Phys 73:367CrossRefGoogle Scholar
  10. 10.
    Ujma Z, Adamczyk M, Hańderek J (1998) J Europ Ceram Soc 18:2201CrossRefGoogle Scholar
  11. 11.
    Adamczyk M, Ujma Z, Hańderek J (2001) J Appl Phys 89:542CrossRefGoogle Scholar
  12. 12.
    Ismunadar, Kennedy BJ (1999) J Mater Chem 9:541CrossRefGoogle Scholar
  13. 13.
    Smolensky GA, Izupov VA, Agranovkaya AI (1961) Sov Phys Solid State 3:651Google Scholar
  14. 14.
    Kholkin AL, Avdeev M, Costa MEV, Baptista JL, Dorogotsev SN (2001) Appl Phys Lett 79:662CrossRefGoogle Scholar
  15. 15.
    Viehland D, Wuttig M, Cross LE (1991) Ferroelectrics 120:71Google Scholar
  16. 16.
    Shur V, Kuminov V, Lomakin G, Beloglazov S, Slovikovski S, Krumins A, Sternberg A (1998) J Korean Phys Soc 32:S985Google Scholar
  17. 17.
    de Costa GC, Simoes AZ, Ries A, Foschini CR, Zaghete MA, Varela JA (2004) Matt Lett 58:1709CrossRefGoogle Scholar
  18. 18.
    Fan HQ, Zhang LT, Zhang LY, Yao X (1999) Solid State Commun 111:541CrossRefGoogle Scholar
  19. 19.
    Viehland D, Jang S, Cross LE, Wuttig M (1990) J Appl Phys 68:2916CrossRefGoogle Scholar
  20. 20.
    Cross LE (1987) Ferroelectrics 76:241Google Scholar
  21. 21.
    Cheng Z-Y, Katiyar RS, Yao X, Bhalla AS (1998) Phys Rev B 57:8166CrossRefGoogle Scholar
  22. 22.
    Bovtun V, Petzelt J, Porokhonskyy V, Kamba S, Yakimenko Y (2001) J Europ Ceram Soc 21:1307CrossRefGoogle Scholar
  23. 23.
    Sherrington D, Kirkpartick S (1975) Phys Rev Lett 35:1792CrossRefGoogle Scholar
  24. 24.
    Viehland D, Jang SJ, Cross LE, Wuttig M (1992) Phys Rev B46:8003Google Scholar
  25. 25.
    Miranda C, Costa MEV, Avdeev M, Kholkin AL, Baptista JL (2001) J Europ Ceram Soc 21:1303CrossRefGoogle Scholar
  26. 26.
    Bidault O, Goux P, Kchikech M, Belkaoumi M, Maglione M (1994) Phys Rev B 49:7868CrossRefGoogle Scholar
  27. 27.
    Maglione M (1996) Ferroelectrics 176:1CrossRefGoogle Scholar
  28. 28.
    Braunlich P (1979) Thermally stimulated relaxation in solids, topics in applied physics, vol. 37, Springer, BerlinGoogle Scholar
  29. 29.
    Hańderek J, Adamczyk M, Ujma Z (1999) Ferroelectrics 233:253CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.Institute of PhysicsUniversity of SilesiaKatowicePoland

Personalised recommendations