Skip to main content
Log in

Corrosive attack of glass by a pharmaceutical compound

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Glass delamination, or the generation of glass flakes, continues to be an unwanted occurrence in the manufacture of parenteral (injectable) solutions and suspensions. In this root cause analysis study, advanced analytical tools including atomic force microscopy, environmental scanning electron microscopy, quantitative image analysis, and dynamic secondary ion mass spectroscopy (D-SIMS) showed significant differences in glass characteristics and performance. By observing the size and spatial arrangement of defects found on the interior surface of vials used as primary packaging for these products, in conjunction with the chemical changes that can occur to the glass because of product contact, a considerable amount of insight can be obtained into this phenomenon. Elemental depth profiling obtained by D-SIMS revealed that the interior vial surface was significantly altered by the presence of the parenteral solution, while another vial (manufactured by another vendor) was not. Although significant chemical changes can occur to the glass, the surface defect structure appears to be the dominant factor controlling the generation of glass flakes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. Pharmaceutical nomenclature for borosilicate glass.

  2. Upon heating, the ammonium sulfate decomposes. The gaseous sulfate reacts with the sodium in the glass, forming sodium sulfate, which is then removed when the vials are washed.

References

  1. Ennis RD et al (2001) Pharm Dev Technol 6(3):393

    Article  CAS  Google Scholar 

  2. Roseman TJ, Brown JA, Scothorn WW (1976) J Pharm Sci 65(1):22

    Article  CAS  Google Scholar 

  3. Borchert SJ, Ryan MM (1989) J Parent Sci Technol 43(2):67–79

    CAS  Google Scholar 

  4. White WB (1992) In: Clark DE, Zoitos BK (eds) Corrosion of glass, ceramics and ceramic superconductors: principles, testing, characterization, and applications. Noyes Publications, Park Ridge, NJ, pp 2–28

  5. Doremus RH (1967) In: Mitchell JW, DeVries RC (eds) Reactivity of solids. Wiley, New York, p 667

  6. McIntyre NS, Strathdee GG, Phillips BF (1980) Surf Sci 100:71

    Article  CAS  Google Scholar 

  7. Dimbley B (1953) J Pharm Pharmacol 5:969

    Article  Google Scholar 

  8. Bacon FR, Raggon FC (1959) J Am Ceram Soc 42(4):199

    Article  CAS  Google Scholar 

  9. Stevens HJ (1991) In: Schneider SJ (ed) Ceramics and glasses. ASM International, Materials Park, pp 394–401

  10. Leadley SR et al (1998) Macromolecules 31(25):8957

    Article  CAS  Google Scholar 

  11. Rossi A et al (2000) Surf Interface Anal 29(7):460

    Article  CAS  Google Scholar 

  12. Swift AJ (1995) Mikrochim Acta 120(1–4):149

    Article  CAS  Google Scholar 

  13. Vickerman JC, Briggs D (eds) (2001) ToF-SIMS: surface analysis by mass spectrometry. IMS Publications and Surface Spectra Limited, Chichester

  14. Doremus RH (1995) J Mater Res 10(9):2379

    Article  CAS  Google Scholar 

  15. Tomozawa H, Tomozawa M (1989) J Non-Crystal Solids 109:311

    Article  CAS  Google Scholar 

  16. Doremus RH (1994) Glass science, 2nd edn. John Wiley & Sons Inc, New York, p 339

    Google Scholar 

  17. Adams PB (1977) Bull Parent Drug Assoc 31(5):213

    CAS  Google Scholar 

  18. Hair ML, Chapman ID (1966) J Am Ceram Soc 49(12):651

    Article  CAS  Google Scholar 

  19. Davison RM, DeBold R, Johnson MJ (1987) In: Korb LJ, Olson BA (eds) ASM handbook. ASM International, Materials Park, OH, pp 547–566

  20. Uhlig HH, Revie RW (1985) Corrosion and corrosion control, 3rd edn. John Wiley & Sons, New York, p 441

    Google Scholar 

  21. Fontana MG (1986) Corrosion engineering, 3rd edn. McGraw-Hill, New York, p 556

    Google Scholar 

  22. Fern S, McPhail DS, Oakley V (2004) Appl Surf Sci 231–232:510

    Article  Google Scholar 

  23. Branda F et al (1999) Glass Technol 40(3):89

    CAS  Google Scholar 

  24. Gillies KJS, Cox A (1988) Glastech Ber 61(4):101

    CAS  Google Scholar 

  25. Schreiner M (1988) Glastech Ber 61(7):197

    CAS  Google Scholar 

  26. Rogers P, McPhail D, Ryan J (1993) Glass Technol 34(2):67

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the many participants in this study including: Dr. Dinesh Mishra, Dr. Heather Weimer, Mr. Eric Olsen, Ms. Sheryl Peoples, and Mr. David Crozier.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald G. Iacocca.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iacocca, R.G., Allgeier, M. Corrosive attack of glass by a pharmaceutical compound. J Mater Sci 42, 801–811 (2007). https://doi.org/10.1007/s10853-006-0156-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-0156-y

Keywords

Navigation