Journal of Materials Science

, Volume 42, Issue 3, pp 812–816 | Cite as

Dielectric responses in Mg1/3Ta2/3-replaced Pb[(Zn1/3Nb2/3),Ti]O3 ceramics

  • Jee-Su Kim
  • Nam-Kyoung KimEmail author


Octahedral lattice sites of Pb[(Zn1/3Nb2/3),Ti]O3 were replaced by 20 at.% Mg1/3Ta2/3 complex to enhance perovskite development, especially at Pb(Zn1/3Nb2/3)O3-rich compositions. Resultant changes in the perovskite formation and associated dielectric responses were investigated. A perovskite structure was identified at Pb(Zn1/3Nb2/3)O3-rich compositions by X-ray diffraction, although the development was rather incomplete. Phase transition modes in the dielectric constant spectra changed from diffuse to sharp ones, regardless of the introduction of Mg1/3Ta2/3. Dielectric maximum temperatures of the ceramics shifted linearly with the compositional change.


Perovskite Rutile Diffuse Phase Transition Sharp Phase Transition Perovskite Formation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This study was supported by the Korea Research Foundation Grant (KRF-2001-041-E00456).


  1. 1.
    Bokov AA, Ye Z-G (2000) Solid State Commun 116:105CrossRefGoogle Scholar
  2. 2.
    Chen IW (2000) J Phys Chem Solids 61:197CrossRefGoogle Scholar
  3. 3.
    Zhu WZ, Mantas PQ, Baptista JL (2000) J Mater Sci Lett 19:491CrossRefGoogle Scholar
  4. 4.
    Kim J-S, Kim N-K (2000) Mater Res Bull 35:2479CrossRefGoogle Scholar
  5. 5.
    Lim S-M, Kim N-K (2000) J Mater Sci 35:4373CrossRefGoogle Scholar
  6. 6.
    Bokov VA, Myl’nikova IE (1961) Sov Phys-Solid State 2:2428Google Scholar
  7. 7.
    Matsuo Y, Sasaki H, Hayakawa S, Kanamaru F, Koizumi M (1969) J Am Ceram Soc 52:516CrossRefGoogle Scholar
  8. 8.
    Wang J, Wan D, Xue J, Ng WB (1999) J Am Ceram Soc 82:477CrossRefGoogle Scholar
  9. 9.
    Lee D-H, Kim N-K (1998) Mater Lett 34:299CrossRefGoogle Scholar
  10. 10.
    Jiang XP, Fang JW, Zeng HR, Chu BJ, Li GR, Chen DR, Yin QR (2000) Mater Lett 44:219CrossRefGoogle Scholar
  11. 11.
    Kumar FJ, Lim LC, Chilong C, Tan MJ (2000) J Crystal Growth 216:311CrossRefGoogle Scholar
  12. 12.
    Zhu WZ, Yan M, Kholkin AL, Mantas PQ, Baptista JL (2002) J Eur Ceram Soc 22:375CrossRefGoogle Scholar
  13. 13.
    Bertram R, Reck G, Uecker R (2003) J Crystal Growth 253:212CrossRefGoogle Scholar
  14. 14.
    Chen J, Gorton A, Chan HM, Harmer MP (1986) J Am Ceram Soc 69:C303Google Scholar
  15. 15.
    Shrout TR, Swartz SL, Haun MJ (1984) Am Ceram Soc Bull 63:808Google Scholar
  16. 16.
    Lee B-H, Kim N-K, Kim J-J, Cho S-H (1998) Ferroelectrics 211:233CrossRefGoogle Scholar
  17. 17.
    Swartz SL, Shrout TR (1982) Mater Res Bull 17:1245CrossRefGoogle Scholar
  18. 18.
    Uchino K, Nomura S (1982) Ferroelectrics Lett 44:55CrossRefGoogle Scholar
  19. 19.
    Butcher SJ, Thomas NW (1991) J Phys Chem Solids 52:595CrossRefGoogle Scholar
  20. 20.
    Kuwabara M, Takahashi S, Goda K, Oshima K, Watanabe K (1992) Jpn J Appl Phys 31:3241CrossRefGoogle Scholar
  21. 21.
    Chae M-C, Lim S-M, Kim N-K (2000) Ferroelectrics 242:25CrossRefGoogle Scholar
  22. 22.
    Ahn B-Y, Kim N-K (2000) J Am Ceram Soc 83:1720CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.Department of Inorganic Materials EngineeringKyungpook National UniversityDaeguKorea

Personalised recommendations