Journal of Materials Science

, Volume 42, Issue 3, pp 817–823 | Cite as

Properties of Nb doped Zr-rich PZT ceramics prepared by a heterogenous precipitation method

  • Hong YangEmail author
  • Caihong Luo
  • Xian-lin Dong
  • Si Chen
  • Yuan-yuan Zhang
  • Yong-ling Wang


A novel heterogenous precipitation method (H-P) combining the merits of solid state synthesis method (S-S-S) and the liquid routes was developed to synthesize the ZrO2 phase-free Zr-rich Pb0.99Nb0.02(Zr0.965Ti0.035)O3 ceramics. The microstructure of the ceramics synthesized by H-P was more homogeneous and fine than that by S-S-S. The density, the dissipation factor, the ferroelectric properties and the dielectric breakdown of the ceramics synthesized by H-P are more outstanding than that by S-S-S. The dielectric breakdown (Eb) increases markedly from 5 kV/mm to 6.5 kV/mm.


Dielectric Breakdown Solid State Synthesis Pb3O4 Dielectric Breakdown Strength Trigger Voltage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors thank for the support from the Great Fundamental Research Project of Science and Technology Commission of Shanghai Municipality (04DZ14002)


  1. 1.
    Wang S, Li JF, Wakabayashi K, Esashi M, Watanabe R (1999) Adv Mater 11:873CrossRefGoogle Scholar
  2. 2.
    White GS, Raynes AS, Vaudin MD, Freiman SW (1994) J Am Ceram Soc 77:2603CrossRefGoogle Scholar
  3. 3.
    Winzer SR, Shankar N, Ritter AP (1989) J Am Ceram Soc 72:2264CrossRefGoogle Scholar
  4. 4.
    Ujma Z (1995) J Phys Condens Matter 7:895CrossRefGoogle Scholar
  5. 5.
    Viehland D, Li Jf, Dai XH, Xu Z (1996) J Phys Chem solids 57:1545CrossRefGoogle Scholar
  6. 6.
    duan N, Cereceda N, Noheda B, Gonzalo A (1997) J Appl Phys 82:779CrossRefGoogle Scholar
  7. 7.
    Yong-Ling W, -Zong YW (1983) ferroelectrics 49:169CrossRefGoogle Scholar
  8. 8.
    Bharadwaja SSN, Saha S, Bhattacharyya S, Krupanidhi SB (2002) Mater Sci and Eng B 88:22CrossRefGoogle Scholar
  9. 9.
    Ujma Z, Szymczak L, Handerek J, Szot K, Penkalla HJ (2000) J Euro ceram Soc 20:1003CrossRefGoogle Scholar
  10. 10.
    Chang YJ, Lian JY, Wang YL (1985) Appl Phys A 36:221CrossRefGoogle Scholar
  11. 11.
    Zhang S, Dong XL, Kojima S (1997) Jpn J Appl phys 36:2994CrossRefGoogle Scholar
  12. 12.
    Ivers JD, Flechtner D, Golkowski C, Liu G, Nation JA, Schachter L (1999) IEEE Trans Plasma Sci 27:707CrossRefGoogle Scholar
  13. 13.
    Miller RC, Savage A (1960) J Appl Phys 31:662CrossRefGoogle Scholar
  14. 14.
    Tuttle BA, Yang P (2001) J Am Ceram Soc 84:1260CrossRefGoogle Scholar
  15. 15.
    Laurent M, Schreiner U, Langjahr PA, Hoffmann MJ (2001) J Euro Ceram Soc 21:1495CrossRefGoogle Scholar
  16. 16.
    Hammer M, Hoffmann MJ (1998) J Am Ceram Soc 81:3277CrossRefGoogle Scholar
  17. 17.
    Jin-Ho C, Yang-Su H, Seung-Joo K (1997) J Mater Chem 7:1807CrossRefGoogle Scholar
  18. 18.
    Guo L, Lyashchenko A, Dong XL (2002) Mater Lett 56:849CrossRefGoogle Scholar
  19. 19.
    Klee M, Eusemann R, Waser R, Brand W (1992) J Appl Phys 72:1566CrossRefGoogle Scholar
  20. 20.
    Shrout T, Schulze WA, Biggers JV (1980) Ferroelectrics 29:129CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Hong Yang
    • 1
    Email author
  • Caihong Luo
    • 2
  • Xian-lin Dong
    • 1
  • Si Chen
    • 1
  • Yuan-yuan Zhang
    • 1
  • Yong-ling Wang
    • 1
  1. 1.Shanghai Institute of CeramicsChinese Academy of SciencesShanghaiP.R. China
  2. 2.Chongqing Environment Monitoring CentreChongqingP.R. China

Personalised recommendations