Journal of Materials Science

, Volume 42, Issue 3, pp 824–827 | Cite as

Spectroscopic studies of TeO2–ZnO–Er2O3 glass system

  • M. R. SaharEmail author
  • K. Sulhadi
  • M. S. Rohani


Series of glass based on the (80 − x)TeO2–20ZnO–(x)Er2O3 system (0.5 mol% ≤ x ≤ 2.5 mol%) has successfully been made by melt quenching technique. The optical properties of glass have been investigated by means of IR and Raman spectroscopy. It is observed that as the Er2O3 content is being increased, the sharp IR absorption peaks are consistently shifted from 650 to 672 cm−1 while the Raman shift intensity around 640–670 cm−1 is decreases but increases around 720–740 cm−1. It is found out that both phenomenons are related to the structural changes between the stretching vibration mode of TeO4 tbp and TeO3 tp, and bending vibration mode of Te–O bonds in the glass linkages.


TeO2 Glass System Er2O3 Tellurite Glass Bend Vibration Mode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors wish to thank the Ministry of Science, Technology and Innovation for their financial support under Vot 74532. We would also thanks to UTM for their continuous support to this project.


  1. 1.
    El-Mallawany R (ed) (2002) Tellurite glasses handbook: physical properties and data. CRC Press LLCGoogle Scholar
  2. 2.
    Bǘrger H, Kneipp K, Hobert H, Vogel W (1992) J Non-Cryst Solids 151:134CrossRefGoogle Scholar
  3. 3.
    Sidebottom DL, Hruschka MA, Potter BG, Brow RK (1997) J Non-Cryst Solids 222:282CrossRefGoogle Scholar
  4. 4.
    Sun K (1988) In: Preparation and characterization of rare earth glasses. Thesis, Brown UniversityGoogle Scholar
  5. 5.
    Marjanovic S, Toulouse J, Jain H, Sandmann C, Dierolf V, Kortan AR, Kopylov N, Ahrens RG (2003) J Non-Cryst Solids 322:311CrossRefGoogle Scholar
  6. 6.
    Uhlmann DR, Kreidl NJ (eds) (1983) Glass: science and technology, vol. 1. Academics Press, New YorkGoogle Scholar
  7. 7.
    Neindre LL, Jiang S, Hwan BC, Luo T, Watson J, Peyghambarian N (1999) J Non-Cryst Solids 255:97CrossRefGoogle Scholar
  8. 8.
    Charton P, Thomas P, Armand P (2003) J Non-Cryst Solids 321:81CrossRefGoogle Scholar
  9. 9.
    Nukui A, Taniguchi T, Miyata M (2001) J Non-Cryst Solids 293–295:260Google Scholar
  10. 10.
    Sahar MR, Noordin N (1995) J Non-Cryst Solids 184:137CrossRefGoogle Scholar
  11. 11.
    Sahar MR, Jehbu AK, Karim MM (1997) J Non-Cryst Solids 213&214:164CrossRefGoogle Scholar
  12. 12.
    Aida K, Benino Y, Dimitrov V, Komatsu T, Sato R (2000) J Am Ceram Soc 83(5):1192CrossRefGoogle Scholar
  13. 13.
    Sahar MR, Sulhadi, Rohani MS (2005) In: The Digest of 2005 International Symposium on Glass. Shanghai PRC, 10–14 April 2005, pp SA1–SA4Google Scholar
  14. 14.
    Liu HS, Chin TS, Yung SW (1997) Mater Chem Phys 50:1CrossRefGoogle Scholar
  15. 15.
    Xia H, Nie Q, Zhang J, Wang J (2003) Mater Lett 4446:1Google Scholar
  16. 16.
    Hu L, Jiang Z (1996) Phys Chem Glasses 37(1):19Google Scholar
  17. 17.
    Nazabal V, Todoroki S, Nukui A, Matsumoto T, Suehara S, Hondo T, Araki T, Inoue S, Rivero C, Cardinal T (2003) J Non-Cryst Solids 325:85CrossRefGoogle Scholar
  18. 18.
    Li H, Su Y, Sundaram SK (2001) J Non-Cryst Solids 293–295:402CrossRefGoogle Scholar
  19. 19.
    Jaba N, Mermet A, Duval E, Champagnon B (2005) J Non-Cryst Solids 351:833CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Advanced Optical Material Research Group, Faculty of ScienceUniversiti Teknologi MalaysiaSkudaiMalaysia

Personalised recommendations