Advertisement

Journal of Materials Science

, Volume 41, Issue 17, pp 5709–5711 | Cite as

A simple approach to oxide varistor materials

  • A. B. Glot
Letter

Non-Ohmic conduction is observed in many oxide ceramic semiconductor materials on the basis of ZnO [1], TiO2 [2] and SnO2 [3, 4]. These ceramics are used as varistors—semiconductor devices with nonlinear symmetric current-voltage characteristic (CVC). Varistor ceramics consist of highly conductive grains with grain-boundary potential barriers formed during sintering [1, 2, 3, 4, 5]. Non-Ohmic conduction in ZnO varistors is explained by thermionic emission enhanced by barrier lowering at low fields with a combination of other mechanisms at high fields [5, 6, 7, 8].

However, in spite of a deep understanding of varistor action [ 5, 6, 7, 8, 9, 10], there is no simple analytical expression of CVC related to the mechanism of non-Ohmic conduction. Instead of that the empirical power-law relation
$$ j = BE^\beta , $$

Keywords

SnO2 Co3O4 Barrier Height Bi2O3 Sb2O3 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Matsuoka M, Masuyama T, Iida Y (1970) Suppl J Jpn Soc Appl Phys 39:94Google Scholar
  2. 2.
    Yan JF, Rodes WW (1982) Appl Phys Lett 40:536CrossRefGoogle Scholar
  3. 3.
    Glot AB, Chakk AM, Chernyj BK, Yakunin AYa (1974) Inorganic Mater 10:2177Google Scholar
  4. 4.
    Glot AB, Zlobin AP (1989) Inorganic Mater 25:322Google Scholar
  5. 5.
    Einzinger R (1975) Ber Dt Keram Ges 52:244Google Scholar
  6. 6.
    Mahan GD, Levinson LM, Philipp HR (1979) J Appl Phys 50:2799CrossRefGoogle Scholar
  7. 7.
    Greuter F, Blatter G, Rosinelly M, Stucky F (1989) In: Levinson LM (ed) Advances in varistor technology. Ceramic transactions, vol 3, Am. Ceram. Soc., Westerville, p 31Google Scholar
  8. 8.
    Vanadamme LKJ, Brugman JC (1980) J Appl Phys 51:4240CrossRefGoogle Scholar
  9. 9.
    Gupta TK (1990) J Am Cer Soc 73:1817CrossRefGoogle Scholar
  10. 10.
    Clarke DR (1999) JAm Ceram Soc 82:485CrossRefGoogle Scholar
  11. 11.
    Avdeenko BK, Glot AB, Ivon AI, Chernenko IM, Schelokov AI (1980) Inorganic Mater 16:1310Google Scholar
  12. 12.
    Greuter F, Christen T, Glatz-Reichenbach J (1998) In: Mat. Res. Soc. Symp. Proc. vol 500, Material Research Society, p 235Google Scholar
  13. 13.
    Bowen LJ, Avella FJ (1983) J Appl Phys 54:2764CrossRefGoogle Scholar
  14. 14.
    Trontelj M, Kolar D, Krasevec V (1983) In: Additives and interfaces in electronic ceramics. Advances in ceramics, vol 7, p 107Google Scholar
  15. 15.
    Glot AB, MazurikSV (2000) Inorganic Mater 36:636CrossRefGoogle Scholar
  16. 16.
    Bueno PR, Oliveira MM, Bacelar-Junior WK, Leite ER, Longo E, Garcia-Belmonte G, Bisquert J (2002) J Appl Phys 91:6007CrossRefGoogle Scholar
  17. 17.
    Skuratovsky I, Glot A, Di Bartolomeo E, Traversa E, Polini R (2004) J Eur Ceram Soc 24:2597CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.División de Estudios de PosgradoUniversidad Tecnológica de la MixtecaOaxacaMéxico

Personalised recommendations