Skip to main content
Log in

Grain boundary engineering of 304 austenitic stainless steel by laser surface melting and annealing

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In order to improve the intergranular corrosion resistance of 304 stainless steel, laser surface remelting experiments were conducted using a 2 kW continuous wave Nd: YAG laser. The grain boundary character distribution (GBCD) and microstructures of the materials were analyzed using EBSD, SEM and OM. The experimental results showed that combination of laser surface melting and annealing on 304 stainless steel resulted in a high frequency of twin boundaries and consequent discontinuity of random boundary network in the materials, which led to an improvement of resistance to intergranular corrosion. The maximum CSL density could reach 88.6% under optimal processing conditions: 1220 K and 28 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Akgun OV, Inal OT (1992) J Mater Sci 27:2147

    Article  CAS  Google Scholar 

  2. Conde A, Colaco R, Vilar R, Damborenea Jde (2000) Mater Design 21:441

    Article  CAS  Google Scholar 

  3. Anthony TR, Cline HE (1978) J App Phys 49:1248

    Article  CAS  Google Scholar 

  4. Akgun OV, Inal OT (1995) J Mater Sci 30:6097

    Article  CAS  Google Scholar 

  5. Alexandreanu B, Was GS (2006) Script Mater 54:1047

    Article  CAS  Google Scholar 

  6. Lin P, Palumbo G, Erb U, Aust KT (1995) Script Metall Mater 33:1387

    Article  CAS  Google Scholar 

  7. Kurban M, Erb U, Aust KT (2006) Script Mater 54:1053

    Article  CAS  Google Scholar 

  8. Stickler R, Vinckier (1963) Mem Sci Rew Metall 60:489

    CAS  Google Scholar 

  9. Trillo EA, Murr LE (1999) Acta Mater 47:225

    Google Scholar 

  10. Watanabe T (1984) Res Mechanica 11:47

    CAS  Google Scholar 

  11. Kokawa H, Watanabe T, Karashima S (1981) Philos Mag A 44:1239

    Article  CAS  Google Scholar 

  12. Watanabe T, Tsurekawa S (1999) Acta Mater 47:4171

    Article  CAS  Google Scholar 

  13. Lehockey EM, Palumbo G, Lin P (1998) Meatll Trans A 29:3069

    Article  Google Scholar 

  14. Hirata T, Tanabe S, Kohzu M, Higashi K (2003) Script Mater 49:891

    Article  CAS  Google Scholar 

  15. Aust KT (1994) Can Metall Quart 33:265

    Article  CAS  Google Scholar 

  16. Yamamura S, Tsurekawa S, Watanabe T (2003) Mater Trans 44:1494

    Article  Google Scholar 

  17. Krupp U, Kane WM, Liu XY, Dueber O, Laird C, McMahon CJ (2003) Mater Sci Eng A 349:213

    Article  Google Scholar 

  18. Randle V (1999) Acta Mater 47:4187

    Article  CAS  Google Scholar 

  19. Shimada M, Kokawa H, Wang ZJ, Sato YS, Karibe I (2002) Acta Mater 50:2331

    Article  CAS  Google Scholar 

  20. Koo JB, Yoon DY (2001) Metall Mater Trans A 32:469

    Article  Google Scholar 

  21. Koo JB, Yoon DY, Henry MF (2002) Metal Trans A 33:3803

    Article  Google Scholar 

  22. Lee SB, Hwang NM, Yoon DY, Henry MF (2000) Metall Trans A 31:985

    Article  Google Scholar 

  23. Yang S, Huang WD, Lin X, Su YP, Zhou YH (2000) Script Mater 42:543

    Article  CAS  Google Scholar 

  24. Brandon DG (1966) Acta Metall 14:1479

    Article  CAS  Google Scholar 

  25. Majidi AP, Streicher MA (1984) Corrosion 40:584

    Article  CAS  Google Scholar 

  26. Kokawa H, Watanabe T, Karashima S (1983) J Mater Sci 18:1183

    Article  CAS  Google Scholar 

  27. Pumphrey OH, Gleiter H (1974) Philos Mag 30:593

    Article  CAS  Google Scholar 

  28. Kokawa H, Watanabe T, Karashima S (1983) Scripta Metall 17:1155

    Article  CAS  Google Scholar 

  29. Fullman RL, Fisher JC (1951) J Appl Phys 22:1350

    Article  CAS  Google Scholar 

  30. Bi HY, Kokawa H, Wang ZJ, Shimada M, Sato YS (2003) Script Mater 49:219

    Article  CAS  Google Scholar 

Download references

Acknowledgements

One of the authors (S. Yang) is grateful to Japan Society for the Promotion of Science for offering a JSPS fellowship. The authors would like to express their gratitude to Dr. Y. S. Kang, Mr. A. Honda and Mr. Isago for their technical support. The partial support of this work Program for New Century Excellent Talents in University from Ministry of Education of China and Science Foundation of IMUT are also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sen Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, S., Wang, Z.J., Kokawa, H. et al. Grain boundary engineering of 304 austenitic stainless steel by laser surface melting and annealing. J Mater Sci 42, 847–853 (2007). https://doi.org/10.1007/s10853-006-0063-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-0063-2

Keywords

Navigation