Journal of Materials Science

, Volume 41, Issue 15, pp 4790–4794 | Cite as

Fabrication and mechanical properties of porous TiB2 ceramic

  • Changqing Hong
  • Xinghong Zhang
  • Jiecai Han
  • Baolin Wang


Porous material of TiB2 with improved mechanical properties was fabricated by vacuum and pressureless sintering. The microstructure of the porous ceramic was characterized by the enhanced neck growth between the initially touching particles. This neck growth was ascribed to the selective heating of TiB2 particles with different dimension. The porous structure prepared by the high-temperature sintering exhibited higher bending strength and fracture toughness in the present experiment. The improved mechanical properties of the sintered composites were attributable to the enhanced neck growth by surface diffusion.


Fracture Toughness Surface Diffusion Boundary Defect Porous Ceramic Cold Isostatic Press 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the program for NCTE and the National Natural Science Foundation of China (Project No. 90505015). We would also show thanks the support of the Foundation of National Key Laboratory for Remanufacturing.


  1. 1.
    Peng HX, Fan Z, Evans JRG, Busfield JJC (2000) J Eur Ceram Soc 20:807CrossRefGoogle Scholar
  2. 2.
    Corbin SF, Apte PS (1999) J Am Ceram Soc 82(7):1693Google Scholar
  3. 3.
    Oh ST, Tajima KI, Ando M, Ohji T (2000) J Am Ceram Soc 83(5):1314CrossRefGoogle Scholar
  4. 4.
    Fukasawa T, Ando M, Ohji T, Kanzaki S (2001) J Am Ceram Soc 84(1):230Google Scholar
  5. 5.
    Hardv D, Green DJ (1995) J Eur Ceram Soc 15:769CrossRefGoogle Scholar
  6. 6.
    Oh S-T, Tajima Ken-ichi, Ando M, Ohji T (2001) Mater Lett 48:215CrossRefGoogle Scholar
  7. 7.
    Oh Ik-Hyum, Nomura N, Masahashi N, Hanada S ( 2003) Scripta Materialia 49:1197CrossRefGoogle Scholar
  8. 8.
    She JH, Ohji T (2003) Mater Chem Phys 80:610CrossRefGoogle Scholar
  9. 9.
    Toby M, Peter Mathews G, Hugget S (1999) Powder Technol 104:169CrossRefGoogle Scholar
  10. 10.
    She J, Yang J-F, Konda N (2002) J Am Ceram Soc 85(11):2852CrossRefGoogle Scholar
  11. 11.
    Zhen-Yan D, Yang J-F, Beppu Y (2002) J Am Ceram Soc 85(8):1961CrossRefGoogle Scholar
  12. 12.
    Deng ZY, Fukasawa T, Ando M, Zhang GJ, Ohji T (2001) Acta Materialia 49(11):1939CrossRefGoogle Scholar
  13. 13.
    Fang Y, Agrawal DK, Roy DM (1992) J Mater Res 7(2):490CrossRefGoogle Scholar
  14. 14.
    Bhaumik SK, Divakar C, Singh AK, Upadhyaya GS (2000) Mater Sci Eng A 279:275CrossRefGoogle Scholar
  15. 15.
    Weimin Wang, Zhengyi Fu (2002) J Eur Ceram Soc 22:1045CrossRefGoogle Scholar
  16. 16.
    Zhen-Yan D, She J, Inagaki Y (2004) J Eur Ceram Soc 24:2055CrossRefGoogle Scholar
  17. 17.
    Walker WJ Jr, Reed JS, Verma SK (1999) J Am Ceram Soc 82:50CrossRefGoogle Scholar
  18. 18.
    Flinn BD, Bordia RK, Zimmermann A, Rodel J (2000) J Eur Ceram Soc 20:2561CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Changqing Hong
    • 1
  • Xinghong Zhang
    • 1
    • 2
  • Jiecai Han
    • 1
  • Baolin Wang
    • 1
  1. 1.Center for Composite Materials and StructureHarbin Institute of TechnologyHarbinP.R. China
  2. 2.Anhui University of Technology and ScienceWuhuP.R. China

Personalised recommendations