Journal of Materials Science

, Volume 42, Issue 3, pp 935–940 | Cite as

Computation of phonon dynamics of Mg70Zn30 metallic glass



In the present paper, the computation of the phonon dynamics of binary Mg70Zn30 metallic glass is reported using the well-recognized model potential of Gajjar et al. The present study includes the phonon dispersion curves (PDC), elastic and thermodynamic properties such as longitudinal sound velocity υL, transverse sound velocity υT, Debye temperature θD, isothermal bulk modulus B T, modulus of rigidity G, Poisson’s ratio σ and Young’s modulus Y and specific heat capacity C V of the glass. Three theoretical models given by Hubbard–Beeby (HB), Takeno–Goda (TG) and Bhatia–Singh (BS) are used to compute the PDC. Five local field correction functions proposed by Hartree (H), Taylor (T), Ichimaru–Utsumi (IU), Farid et al. (F) and Sarkar et al. (S) are employed for the first time to study the effect of exchange and correlation in the aforesaid properties. The pseudo-alloy-atom (PAA) model is applied for the first time instead of Vegard’s Law.


Metallic Glass Phonon Dispersion Curve Isothermal Bulk Modulus Wave Vector Transfer Effective Pair Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The author (AMV) is very much thankful to Prof. P. N. Gajjar, Department of Physics, School of Sciences, Gujarat University, Ahmedabad and Prof. A. R. Jani, Department of Physics, Sardar Patel University, Vallabh Vidyanagar under whom this work has been carried out.


  1. 1.
    Von Heimendahl L (1979) J Phys F Met Phy 9:161CrossRefGoogle Scholar
  2. 2.
    Tomanek D (1079) Diplomarbeit, Universität BaselGoogle Scholar
  3. 3.
    Saxena NS, Bhandari D, Pratap A, Saksena MP (1990) J Phys Condens Matter 2:9475CrossRefGoogle Scholar
  4. 4.
    Takeno S, Goda M (1971) Prog Thero Phys 45 331; (1972) Prog Thero Phys 47:790Google Scholar
  5. 5.
    Agarwal PC, Aziz KA, Kachhava CM (1992) Acta Phys Hung 72:183; (1993) Phys Stat Sol (b) 178:303Google Scholar
  6. 6.
    Bhatia AB, Singh RN (1985) Phys Rev B31:4751Google Scholar
  7. 7.
    Agarwal PC, Kachhava CM (1992) Physica B179:43; (1993) Phys Stat Sol (b) 179:365Google Scholar
  8. 8.
    Suck JB, Rudin H, Güntherodt HJ, Beck H (1980) J Phys C Solid State Phys 13:L1045CrossRefGoogle Scholar
  9. 9.
    Hafner J, Jaswal SS (1988) Phil Mag A58:61Google Scholar
  10. 10.
    Hafner J, Jaswal SS, Tegze M, Pflugi A, Krieg J, Oelhafen P, Güntherodt HJ (1988) J Phys F Met Phys 18:2583CrossRefGoogle Scholar
  11. 11.
    Benmore CJ, Oliver BJ, Suck JB, Robinson RA, Eglestaff PA (1995) J Phys Condens Matter 7:4775CrossRefGoogle Scholar
  12. 12.
    Benmore CJ, Sweeney S, Robinson RA, Eglestaff PA, Suck J-B (1998) Physica B241–243:912; (1999) J Phys Condens Matter 11:7079Google Scholar
  13. 13.
    Bryk T, Mryglod I (1999) Cond Mat Phys 2:285Google Scholar
  14. 14.
    Thakore BY, Gajjar PN, Jani AR (1997) Solid State Physics (India) 40C:70; (2000) Bull Mater Sci 23:5Google Scholar
  15. 15.
    Vora AM, Patel MH, Gajjar PN, Jani AR (2003) Solid State Phys (India) 46:315Google Scholar
  16. 16.
    Patel MH, Vora AM, Gajjar PN, Jani AR (2001) Physica B304:152; (2002) Commun Theor Phys 38:365Google Scholar
  17. 17.
    Gajjar PN, Vora AM, Patel MH, Jani AR (2003) Int J Mod Phys B17:6001CrossRefGoogle Scholar
  18. 18.
    Gajjar PN, Vora AM, Jani AR (2004) Mod Phys Lett B18:573; (2004) Ind J Phys 78:775Google Scholar
  19. 19.
    Hubbard J, Beeby JL (1969) J Phys C Solid State Phys 2:556CrossRefGoogle Scholar
  20. 20.
    Shukla MM, Campanha JR (1998) Acta Phys Pol A94:655Google Scholar
  21. 21.
    Kovalenko NP, Krasny YP (1990) Physica B162:115Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  1. 1.Bhuj-KutchIndia

Personalised recommendations