Journal of Materials Science

, Volume 42, Issue 3, pp 914–922 | Cite as

Effect of Ni loading and reaction temperature on the formation of carbon nanotubes from methane catalytic decomposition over Ni/SiO2

  • Lúcia K. Noda
  • Norberto S. Gonçalves
  • Antoninho Valentini
  • Luiz F. D. Probst
  • Rusiene M. de Almeida


Since their discovery carbon nanotubes (CNT) have attracted much attention due to their singular physical, mechanical and chemical properties. Catalytic chemical vapor deposition (CCVD) of hydrocarbons over metal catalysts is the most promising method for the synthesis of CNT, because of the advantages of low cost and large-scale production and the relatively low temperature used in the process, compared to the other methods (laser ablation and discharge between graphite electrodes). In this study, CNT were synthesized by CCVD using Ni supported on SiO2 as a catalyst. The carbon deposited in the reaction was analyzed by Raman spectroscopy, thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The effects of reaction temperature and Ni loading on the carbon nanotube formation were evaluated. The catalyst with 5% Ni favored high yield of CNT at lower temperature, with abundant “multi-walled carbon nanotubes” (MWNTs) at 625 °C, while single-walled carbon nanotubes (SWNTs) and MWNTs were obtained at 650 °C. With an increase in the reaction temperature a marked decrease in the yield of CNT was observed, probably due to the sintering of the catalyst. The catalyst with 1% Ni gave SWNTs with a high degree of order at all reaction temperatures, but in low quantity.


Raman Spectrum Radial Breathing Mode Carbon Filament Catalytic Chemical Vapor Deposition Ethanol Decomposition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Thanks to CNPq, Prodoc CAPES, Laboratory of Molecular Spectroscopy of Chemistry Institute, São Paulo University for the utilization of Renishaw Raman System 3000.


  1. 1.
    Iijima S (1991) Nature 354:56CrossRefGoogle Scholar
  2. 2.
    Iijima S, Ichihashi T (1993) Nature 363:603CrossRefGoogle Scholar
  3. 3.
    Guo T, Nikolaev P, Thess A, Colbert DT, Smalley RE (1995) Chem Phys Lett 243:49CrossRefGoogle Scholar
  4. 4.
    Kong J, Cassel AM, Dai H (1998) Chem Phys Lett 292:4CrossRefGoogle Scholar
  5. 5.
    Dai HX, Rinzler P, Nikolacv P, Thess A, Colbert DT, Smalley RE (1996) Chem Phys Lett 260:471CrossRefGoogle Scholar
  6. 6.
    Colomer JF, Bister G, Willems I, Konya Z, Fonseca A, Van Tendeloo G, Nagy JB (1999) Chem Commun 1343Google Scholar
  7. 7.
    Peigney A, Laurent Ch, Dobigcon F, Roussel A (1997) J Mater Res 12:613Google Scholar
  8. 8.
    Kong J, Cassel AM, Dai H (1998) Chem Phys Lett 292:567CrossRefGoogle Scholar
  9. 9.
    Hafner JH, Bronikowski MJ, Azamian BR, Nikolaev P, Rinzler AG, Colbert DT, Smith KA, Smalley RE (1998) Chem Phys Lett 296:195CrossRefGoogle Scholar
  10. 10.
    Cassel AM, Kong JA, Dai HJ (1999) Phys Chem B103:6484Google Scholar
  11. 11.
    Colomer JF, Stephan C, Lefrant S, Van Tendeloo G, Willems I, Kónya Z, Fonseca A, Laurent C, Nagy JB (2000) Chem Phys Lett 317:83CrossRefGoogle Scholar
  12. 12.
    Li Q, Yan H, Zhang J, Liu Z (2004) Carbon 42:829CrossRefGoogle Scholar
  13. 13.
    Shajahan M, Mo YH, Kibria AKMF, Kim MJ, Nahm KS (2004) Carbon 42:2245CrossRefGoogle Scholar
  14. 14.
    Murakami Y, Yamakita S, Okubo T, Maruyama S (2003) Chem Phys Lett 375:393CrossRefGoogle Scholar
  15. 15.
    Javey A, Kim H, Brink M, Wang Q, Ural A, Guo J, Mcintyre P, Mceuen P, Lundstrom M, Dai H (2002) Nat Mater 1:241CrossRefGoogle Scholar
  16. 16.
    Seidel R, Liebau M, Duesberg BS, Kreupl F, Unger E, Graham AP, Hoenlein W, Pompe W (2003) Nanoletters 3:965Google Scholar
  17. 17.
    Seidel R, Duesberg GS, Unger E, Graham AP, Liebau M, Kreupl F (2004) J Phys Chem B108:1888Google Scholar
  18. 18.
    Tang S, Zhong Z, Xiong Z, Liu L, Lin J, Shen ZX, Tan KL (2001) Chem Phys Lett 350:19CrossRefGoogle Scholar
  19. 19.
    Kitiyanan B, Alvarez WE, Harwel JH, Resasco DE (2000) Chem Phys Lett 317:497CrossRefGoogle Scholar
  20. 20.
    Pimenta MA, Marucci A, Empedocles S, Bawendi M, Hanlon EB, Rao AM, Eklund PC, Smalley G, Dresselhaus RE, Dresselhaus MS (1998) Phys Rev B58:R16012Google Scholar
  21. 21.
    Alvarez L, Righi A, Guillard T, Rols S, Anglaret E, Laplaze D, Dauvajol JL (2000) Chem Phys Lett 316:186CrossRefGoogle Scholar
  22. 22.
    Liao H, Hafner JH (2004) J Phys Chem B108:6941Google Scholar
  23. 23.
    Maruyama S, Kojima R, Miyauchi Y, Chiashi S, Kohno M (2002) Chem Phys Lett 360:229CrossRefGoogle Scholar
  24. 24.
    Méhn D, Fonseca A, Bister G, Nagy JB (2004) Chem Phys Lett 393:378CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Lúcia K. Noda
    • 1
  • Norberto S. Gonçalves
    • 1
  • Antoninho Valentini
    • 2
  • Luiz F. D. Probst
    • 1
  • Rusiene M. de Almeida
    • 1
  1. 1.Laboratory of Heterogeneous Catalysis, Chemistry DepartmentUniversidade Federal de Santa CatarinaFlorianopolisBrazil
  2. 2.Department of Analytical and Physical ChemistryUniversidade Federal do CearáFortalezaBrazil

Personalised recommendations