Skip to main content
Log in

Effect of heating mode and temperature on sintering of YAG dispersed 434L ferritic stainless steel

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This study examines the effect of heating mode, sintering temperature, and varying yttria alumina garnet (YAG) addition (5 and 10 wt%) on the densification and properties of ferritic (434L) stainless steel. The straight 434L stainless steel and 434L–YAG composites were sintered in a conventional and a 2.45 GHz microwave furnace. The composites were sintered to solid-state as well as supersolidus sintering temperature at 1200 and 1400 °C, respectively. Both 434L and 434L–YAG compacts coupled with microwaves and underwent rapid heating (∼45 °C/min). This resulted in about 85% reduction in the processing time. For all compositions microwave sintering results in greater densification. As compared to conventional sintering, microwave sintered compacts exhibit a more refined microstructure, thereby, resulting in higher bulk hardness. The mechanical properties and sliding wear resistance of 434L stainless steel is shown to be sensitive both to the sintering condition as well as YAG addition and has been correlated to the effect of heating mode on the pore morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Davis JR (1994) In: Stainless steels. ASM International, Materials Park, OH, USA

  2. Dyke DL, Ambs HD (1983) In: Klar E (ed) American society for metals, powder metallurgy applications, advantages and limitations. ASM, Materials Park, OH, USA, p 123

  3. German RM (ed) (1998) Powder metallurgy of iron and steel. John Wiley, New York, NY, USA

  4. German RM (ed) (1996) Sintering theory and practice. John Wiley, New York, NY, USA

  5. Madan DS (1991) Int J Powder Metall 27:339

    CAS  Google Scholar 

  6. Lei G, German RM, Nayar HS (1983) Powder Metall Int 15:70

    CAS  Google Scholar 

  7. Chatterjee SK, Warwick ME (1985) In: Modern developments in powder metallurgy, vol 16 MPIF, Princeton, NJ, USA, p 277

  8. Wang W, Su Y (1986) Powder Metall 29:177

    Article  CAS  Google Scholar 

  9. Molinari A, Strafelini G, Kazior J, Pieczonka T (1998) Int J Powder Metall 34:21

    CAS  Google Scholar 

  10. Reinshagen JH, Mason RP (1994) Int J Powder Metall 30:165

    CAS  Google Scholar 

  11. Cambal L, Lund JA (1972) Int J Powder Metall 8:131

    CAS  Google Scholar 

  12. German RM (1997) Metall Mater Trans A 28:1553

    Article  Google Scholar 

  13. German RM (1997) Int J Powder Metall 33:49

    CAS  Google Scholar 

  14. Pagounis E, Lindroos VK (1998) Mater Sci Eng A 246:221

    Article  Google Scholar 

  15. Velasco F, Anton N, Torralba JM, Ruiz-Prieto JM (1997) Mater Sci Tech 13:847

    Article  CAS  Google Scholar 

  16. Patankar SN, Tan MJ (2000) Powder Metall 43:350

    Article  CAS  Google Scholar 

  17. Datta P, Upadhyaya GS (2003) Sci Sintering 32:109

    Google Scholar 

  18. Vardavoulias M, Jeandin M, Velasco F, Torralba JM (1996) Tribol Int 29:499

    Article  CAS  Google Scholar 

  19. Mukherjee SK, Upadhyaya GS (1983) Int J Powder Metall Powder Tech 19:289

    CAS  Google Scholar 

  20. Shankar J, Upadhyaya A, Balasubramaniam R (2004) Corr Sci 46:487

    Article  CAS  Google Scholar 

  21. Jain J, Kar AM, Upadhyaya A (2004) Mater Lett 58:2037

    Article  CAS  Google Scholar 

  22. Rao KJ, Ramesh PD (1995) Bull Mater Sci 18:447

    Article  CAS  Google Scholar 

  23. Clark DE, Sutton WH (1996) Ann Rev Mater Sci 26:299

    Article  CAS  Google Scholar 

  24. Pozar DM (ed) (2001) Microwave engineering, 2nd edn. John Wiley, Toronto, Canada

  25. Gerdes T, Willert-Porada M, Rödiger K, Dreyer K (1996) Mater Res Soc Symp Proc 430:175

    Article  CAS  Google Scholar 

  26. Roy R, Agrawal DK, Cheng JP, Gedevanishvili S (1999) Nature 399:668

    Article  CAS  Google Scholar 

  27. Willert-Porada M, Park HS (2001) In: Clark DE, Binner JGP, Lewis DA (eds) Microwaves: theory and application in materials processing IV. The American Ceramic Society, Westerville, OH, USA, p 459

  28. Anklekar RM, Agrawal DK, Roy R (2001) Powder Metall 44:355

    Article  CAS  Google Scholar 

  29. Sethi G, Upadhyaya A, Agrawal D (2003) Sci Sintering 35:49

    Article  CAS  Google Scholar 

  30. Willert-Porada M (1997) In: Clark DE, Sutton WH, Lewis DA (eds) Microwaves: theory and application in materials processing IV. The American Ceramic Society, Westerville, OH, USA, p 153

  31. Standard Test Methods For Metal Powders and Powder Metallurgy Products (1991) Metal Powder Industries Federation, Princeton, NJ, USA

  32. Pert E, Carmel Y, Birnboim A, Olorunyolemi T, Gershon D, Calame J, Lloyd IK, Wilson Jr OC (2001) J Am Ceram Soc 84:1981

    Article  CAS  Google Scholar 

  33. Lide DR (ed) (1998) CRC handbook of chemistry and physics, 79th edn. CRC Press, Boca Raton, FL, USA

  34. Nayer A (ed) (1997) The metals data book. McGraw-Hill, New York, NY, USA

  35. Howard RT, Cohen M (1947) Trans AIME 172:413

    Google Scholar 

  36. Mishra P, Sethi G, Upadhyaya A (2006) Metall Mater Trans B 37B:839

    Article  CAS  Google Scholar 

  37. Kang SJL (ed) (2005) Sintering: densification, grain growth & microstructure. Elsevier Butterworth-Heinemann, London, UK

  38. Sahay SS, Krishan K (2004) Physica B 348:310

    Article  CAS  Google Scholar 

  39. Sahay SS, Krishnan K (2005) Thermochim Acta 430:23

    Article  CAS  Google Scholar 

  40. Peelamedu RD, Roy R, Agrawal D (2001) Mater Res Bull 36:2723

    Article  CAS  Google Scholar 

  41. Anklekar RM, Bauer K, Agrawal DK, Roy R (2005) Powder Metall 48:39

    Article  CAS  Google Scholar 

  42. Iglesias FAC, Roman JMR, Cambronero LEG, Prieto JMR, Lopez ERM, Lopez FA (1998) In: Proc of PM World Congress: high alloy steel, vol. 3. EPMA, Shrewsbury, UK, p 471

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from Department of Science & Technology (DST) and Ministry of Human Resource and Development (MHRD), India. The microwave sintering experiments were conducted at the Microwave Research Center at Penn Sate University through partial financial support from DOE (grant no. DE-FC26-02NT41662). Assistance provided by Vintee Singh in experiments is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Upadhyaya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panda, S.S., Upadhyaya, A. & Agrawal, D. Effect of heating mode and temperature on sintering of YAG dispersed 434L ferritic stainless steel. J Mater Sci 42, 966–978 (2007). https://doi.org/10.1007/s10853-006-0006-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-0006-y

Keywords

Navigation