Advertisement

Journal of Materials Science

, Volume 40, Issue 5, pp 1153–1158 | Cite as

Effects of gallia additions on sintering behavior of Ce0.8Gd0.2O1.9 ceramics prepared by commercial powders

  • Joo-Sin Lee
  • Kwang-Hoon Choi
  • Bong-Ki Ryu
  • Byoung-Chul Shin
  • Il-Soo Kim
Article

Abstract:

The densification behavior and grain growth of Ce0.8Gd0.2O1.9 ceramics were investigated with the gallia concentration ranging from 0 to 10 mol%. Both the sintered density and grain size were found to increase rapidly up to 0.5 mol% Ga2O3, and then to decrease with further additions. Under the same sintering conditions, the samples with 3 mol% Ga2O3 and less exhibited a higher sintered density, as compared to the one without Ga2O3 addition. However, a pinning effect on grain growth was found at ≥ 2 mol% Ga2O3. In the dopant content range of 0 to 10 mol%, 0.5 mol% Ga2O3 was the optimum doping level in promoting densification and grain growth of commercially available powders of Ce0.8Gd0.2O1.9.

Keywords

Polymer Grain Size Gallia Doping Level Ga2O3 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Riley, J. Power Sources 29 (1990) 223.Google Scholar
  2. 2.
    J. V. Herle, T. Horita, T. Kawada, N. Sakai, H. Yokokawa and M. Dokiya, J. Amer. Ceram. Soc. 80 (1997) 933.Google Scholar
  3. 3.
    A. Overs and I. Riess, J. Amer. Ceram. Soc. 65 (1982) 606.Google Scholar
  4. 4.
    P. L. Chen and I. W. Chen, J. Amer. Ceram. Soc. 76 (1993) 1577.Google Scholar
  5. 5.
    Y. C. Zhou and M. N. Rahaman, J. Mater. Res. 8 (1993) 1689.Google Scholar
  6. 6.
    K. Yamashita, K. V. Ramanujachary and M. Greenblatt, Solid State Ionics 81 (1995) 53.Google Scholar
  7. 7.
    A. K. Bhattacharya, A. Hartridge, K. K. Mallick and J. L. Woodhard, J. Mater. Sci. 31 (1996) 5005.Google Scholar
  8. 8.
    J. V. Herle, T. Horita, T. Kawada, N. Sakai, H. Yokokawa and M. Dokiya, Solid State Ionics 86–88 (1996) 1255.Google Scholar
  9. 9.
    K. Higashi, K. Sonoda, H. Ono, S. Sameshima and Y. Hirata, J. Mater. Res. 14 (1996) 957.Google Scholar
  10. 10.
    H. Yoshida, K. Miura, J. Fujita and T. Inagaki, J. Amer. Ceram. Soc. 82 (1999) 219.Google Scholar
  11. 11.
    C. M. Kleinlogel and L. J. Gauckler, Solid State Ionics 135 (2000) 567.Google Scholar
  12. 12.
    C. M. Kleinlogel and L. J. Gauckler, J. Electroceram. 5 (2000) 231.Google Scholar
  13. 13.
    T. Zhang, P. Hing, H. Huang and J. Kilner, J. Europ. Ceram. Soc. 21 (2001) 2221.Google Scholar
  14. 14.
    T. Zhang, P. Hing, H. Huang and J. Kilner, J. Europ. Ceram. Soc. 22 (2002) 27.Google Scholar
  15. 15.
    J. S. Lee, K. H. Choi, B. K. Ryu, B. C. Shin and I. S. Kim, Mater. Res. Bull. 39 (2004) 2025.Google Scholar
  16. 16.
    R. D. Shannon and C. T. Prewitt, Acta Cryst. B 25 (1969) 925.Google Scholar
  17. 17.
    P. L. Chen and I. W. Chen, J. Amer. Ceram. Soc. 79 (1996) 1793.Google Scholar
  18. 18.
    J. S. Lee, K. H. Choi, B. K. Ryu, B. C. Shin and I. S. Kim, J. Mater. Sci. Lett. 22 (2003) 1805.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Joo-Sin Lee
    • 1
  • Kwang-Hoon Choi
    • 1
  • Bong-Ki Ryu
    • 1
  • Byoung-Chul Shin
    • 2
  • Il-Soo Kim
    • 3
  1. 1.Department of Advanced Materials EngineeringKyungsung UniversityBusanKorea
  2. 2.School of Materials Science and EngineeringPusan National UniversityBusanKorea
  3. 3.Department of Information Materials EngineeringDongeui UniversityBusanKorea

Personalised recommendations