Journal of Materials Science

, Volume 40, Issue 4, pp 927–932 | Cite as

Weld decay-resistant austenitic stainless steel by grain boundary engineering

Grain Boundary and Interface Engineering


This paper presents an example of grain boundary engineering (GBE) for improving intergranular-corrosion and weld-decay resistance of austenitic stainless steel. Transmission and scanning electron microscope (TEM and SEM) observations demonstrated that coincidence site lattice (CSL) boundaries possess strong resistance to intergranular precipitation and corrosion in weld decay region of a type 304 austenitic stainless steel weldment. A thermomechanical treatment for GBE was tried for improvement of intergranular corrosion resistance of the 304 austenitic stainless steel. The grain boundary character distribution (GBCD) was examined by orientation imaging microscopy (OIM). The sensitivity to intergranular corrosion was reduced by the thermomechanical treatment and indicated a minimum at a small roll-reduction. The frequency of CSL boundaries indicated a maximum at the small roll-reduction. The corrosion rate was much smaller in the thermomechanical-treated specimen than in the base material for long time sensitization. The optimum thermomechanical treatment introduced a high frequency of CSL boundaries and the clear discontinuity of corrosive random boundary network in the material, and resulted in the high intergranular corrosion resistance arresting the propagation of intergranular corrosion from the surface. The optimized 304 stainless steel showed an excellent resistance to weld decay during arc welding.


Welding Austenitic Stainless Steel Thermomechanical Treatment Coincidence Site Lattice Intergranular Corrosion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Folkhard, “Welding Metallurgy of Stainless Steels” (Springer-Verlag, Vienna, 1988) p. 103.Google Scholar
  2. 2.
    S. Kou, “Welding Metallurgy” (John Wiley and Sons, New York, 1987) p. 369.Google Scholar
  3. 3.
    P. H. Pumphrey, in “Grain Boundary Structure and Properties,” edited. by G. A. Chadwick and D. A. Smith (Academic Press, London, 1976) p. 139.Google Scholar
  4. 4.
    T. Watanabe, Res Mechanica 11 (1984) 47.Google Scholar
  5. 5.
    G. Palumbo, E. M. Lehockey and P. Lin, JOM 50 (1998) 40.Google Scholar
  6. 6.
    E. M. Lehockey, G. Palumbo, P. Lin and A. M. Brennenstuhl, Scripta Mater. 36 (1997) 1211.CrossRefGoogle Scholar
  7. 7.
    E. M. Lehockey, G. Palumbo and P. Lin, Metall. Mater. Trans. A 29A (1998) 3069.Google Scholar
  8. 8.
    P. Lin, G. Palumbo and K. T. Aust, Scripta Mater. 36 (1997) 1145.CrossRefGoogle Scholar
  9. 9.
    H. Kokawa and T. Kuwana, Trans. Jpn. Weld. Soc. 23 (1992) 73.Google Scholar
  10. 10.
    H. Kokawa, M. Shimada and Y. S. Sato, JOM 52 (2000) 34.Google Scholar
  11. 11.
    H. Kokawa, T. Koyanagawa, M. Shimada Y. S. Sato, T. Kuwana, in “Properties of Complex Inorganic Solids 2,” edited by A. Meike, A. Gonis P. E. A. Turchi, K. Rajan (Kluwer Academic/Plenum Publishers, New York, 2000) p. 17.Google Scholar
  12. 12.
    M. Shimada, H. Kokawa, Z. J. Wang, Y. S. Sato and I. Karibe, Acta Mater. 50 (2002) 2331.CrossRefGoogle Scholar
  13. 13.
    H. Kokawa, M. Shimada, Z. J. Wang and Y. S. Sato, Annales de Chimie, Science des Materaix 27 (2002) S315.Google Scholar
  14. 14.
    H. Y. Bi, H. Kokawa, Z. J. Wang, M. Shimada and Y. S. Sato, Scripta Mater. 49 (2003) 219.CrossRefGoogle Scholar
  15. 15.
    B. L. Adams, S. I. Wright and K. Kunze, Metall. Trans. A 24A (1993) 819.Google Scholar
  16. 16.
    H. Kokawa, T. Watanabe and S. Karashima, Philos. Mag. A 44 (1981) 1239.Google Scholar
  17. 17.
    D. G. Brandon, Acta Metall. 14 (1966) 1479.Google Scholar
  18. 18.
    H. Kokawa, T. Watanabe and S. Karashima, Scripta Metall. 21 (1987) 839.CrossRefGoogle Scholar
  19. 19.
    A. P. Majidi and M. A. Streicher, Corrosion 40 (1984) 584.Google Scholar
  20. 20.
    J. B. Lee, Corrosion 39 (1983) 469.Google Scholar
  21. 21.
    E. A. Trillo and L. E. Murr, J. Mater. Sci. 33 (1998) 1263.Google Scholar
  22. 22.
    E. A. Trillo and L. E. Murr, Acta Mater. 47 (1999) 235.CrossRefGoogle Scholar
  23. 23.
    D. A. Smith, Scripta Metall. 8 (1974) 1197.CrossRefGoogle Scholar
  24. 24.
    C. B. Thomson and V. J. Randle, Mater. Sci. 32 (1997) 1909.CrossRefGoogle Scholar
  25. 25.
    W. E. King and A. J. Schwartz, Scripta Mater. 38 (1998) 449.CrossRefGoogle Scholar
  26. 26.
    V. Thaveeprungsriporn, P. Sinsrok and D. Thong-Aram, Scripta Mater. 44 (2001) 67.CrossRefGoogle Scholar
  27. 27.
    A. J. Schwartz and W. E. King, JOM 50 (1998) 50.Google Scholar
  28. 28.
    V. Randle, Acta Mater. 47 (1999) 4187.CrossRefGoogle Scholar
  29. 29.
    M. Kumar, W. E. King and A. J. Schwartz, Acta Mater. 48 (2000) 2081.CrossRefGoogle Scholar
  30. 30.
    P. Lin, G. Palumbo, U. Erb, and K. T. Aust, Scripta Metall. Mater. 33 (1995) 1387.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Department of Materials ProcessingGraduate School of Engineering. Tohoku UniversityJapan

Personalised recommendations