Journal of Materials Science

, Volume 40, Issue 3, pp 711–717 | Cite as

Microstructure and high-temperature strength of Al2O3/Er3Al5O12/ZrO2 ternary melt growth composite

  • Y. Waku
  • S. Sakata
  • A. Mitani
  • K. Shimzu
  • A. Ohtsuka
  • M. Hasebe


A new Al2O3/Er3Al5O12(EAG)/ZrO2 ternary MGC (Melt Growth Composite) with a novel microstructure has been fabricated by unidirectional solidification. This ternary MGC has a microstructure consisting of continuous networks of single-crystal Al2O3, single-crystal EAG and fine cubic-ZrO2 phases without grain boundaries. The ternary MGC has also characteristic dimensions of the microstructure of around 2–4 μ m for EAG phases, around 2–4 μ m for Al2O3 phases reinforced with around 0.4–0.8 μ m cubic-ZrO2 phases. No amorphous phases are formed at interfaces between phases in the ternary MGC. The ternary MGC’s flexural strength at 1873 K is approximately 700 MPa, more than twice the 330 MPa of the Al2O3/EAG binary MGC. The fracture manner of the Al2O3/EAG/ZrO2 ternary MGC at 1873 K shows the same intergranular fracture as the Al2O3/EAG binary MGC, but is significantly different from the transgranular fracture of the sintered ceramic.


Polymer Microstructure Al2O3 Amorphous Phase Flexural Strength 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Mah and T. A. Parthasarathy, Ceram. Eng. Sci. Proc. 11 (1990) 1617.Google Scholar
  2. 2.
    T. A. Parthasarathy, T. Mah and L. E. Matson, Ceram. Eng. Sci. Proc. 11 (1990) 1628.Google Scholar
  3. 3.
    T. A. Parthasarathy, Tai-II Mar and L. E. Matson, J. Am. Ceram. Sci. 76 (1993) 29.Google Scholar
  4. 4.
    A. Sayir and S. C. Farmer, Acta Mater. 48 (2000) 4691.Google Scholar
  5. 5.
    J. Y. Pastor, P. Poza, J. LLorca, J. I. Pena, R. I. Merino and V. M. Orera, J. Am. Ceram. Sci. 83 (2000) 2745.Google Scholar
  6. 6.
    T. A. Lopato, L. V. Nazarenko, G. I. Garasimyuk and A. V. Schevchenko, Inorg. Matl. 26 (1990) 701.Google Scholar
  7. 7.
    J. McKittrick and G. Kalonji, Mater. Sci. Eng. A231 (1997) 90.Google Scholar
  8. 8.
    J. Echigoya, Y. Takabayashi and H. Suto, J. Mater. Sci. Letter 5 (1986) 153.Google Scholar
  9. 9.
    V. A. Bordein, M. Yu. Starostin and T. N. Yalovets, J. Crystal Growth 104 (1990) 148.Google Scholar
  10. 10.
    Y. Waku, S. Sakata, A. Mitani and K. Shimizu, Mat Res Innovat. 5 (2001) 94.Google Scholar
  11. 11.
    Y. Waku, S. Sakata, A. Mitani, K. Shimizu, A. Ohtsuka and M. Hasebe, J. Mater. Sci. 37 (2002) 2975.Google Scholar
  12. 12.
    N. Nakagawa, Y. Waku and T. Wakamoto, Mater. Manufact. Proc. 15 (2000) 709.Google Scholar
  13. 13.
    N. Nakagawa, Y. Waku, T. Wakamoto, H. Ohtsubo, K. Shimizu and Y. Kohtoku, J. Jpn. Inst. Metals 64 (2000) 101.Google Scholar
  14. 14.
    Y. Waku, N. Nakagawa, H. Ohtsubo, A. Mitani and K. Shimizu, J. Mater. Sci. 36 (2001) 1585.Google Scholar
  15. 15.
    ASTM Standard E399-90, Annual Book of ASTM Standard 03.01 (1990) 407.Google Scholar
  16. 16.
    M. Mizuno, Yogyo Kyokaishi. 87 (1979) 405.Google Scholar
  17. 17.
    G. R. Fischer, L. J. McNally and R. N. Doman, J. Mater. Sci. 16 (1981) 3447.Google Scholar
  18. 18.
    A. Rouanet, Rev. Int. Hautes Temp. Refract. 8 (1971) 161.Google Scholar
  19. 19.
    D. R. Clarke, J. Am. Ceram. Soc. 62 (1979) 236.Google Scholar
  20. 20.
    J. Echigoya, S. Hayashi, K. Sasaki and H. Suto, J. Jpn Inst. Metals 48 (1984) 430.Google Scholar
  21. 21.
    K. J. McClellan, H. Sayir, A. H. Heuer, A. Sayir, J. S. Haggerty and J. Sigalovsky, Ceram. Eng. Sci. Proc 14 (1993) 651.Google Scholar
  22. 22.
    H. S. Kim and S. Roberts, J. Am. Ceram. Soc. 77 (1994) 3099.Google Scholar
  23. 23.
    W. B. Hillig, in Tailoring Multiphase and Composite Ceramics, edited by Richard E. Tressler, Gray L. Messing, Carlo G. Pantano and Robert E. Newnham (Plenum Press, Materials Science Research 1986) Vol. 20, p. 697.Google Scholar
  24. 24.
    M. Yoshida, K. Tanaka, T. Kubo, H. Terazone and S. Tsuruzone, in Proceedings of the international Gas Turbine & Aeroengine Congress & Exibition, Stockholm (The American Society of Mechanical Engineeers, Sweden, 1998) p. 1.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Y. Waku
    • 1
    • 3
  • S. Sakata
    • 1
    • 4
  • A. Mitani
    • 1
    • 4
  • K. Shimzu
    • 1
    • 4
  • A. Ohtsuka
    • 1
  • M. Hasebe
    • 2
  1. 1.Japan Ultra-High Temperature Materials Research InstituteUbe CityJapan
  2. 2.Department of Materials Science and EngineeringKyushu Institute of TechnologyTobata-kuJapan
  3. 3.HPGT Research AssociationUbe CityJapan
  4. 4.Ube Research Laboratory, Ube Industries, Ltd.Ube CityJapam

Personalised recommendations