Journal of Materials Science

, Volume 40, Issue 3, pp 637–642 | Cite as

Novel production for highly formable Mg alloy plate

  • Y. S. SATO
  • S. H. C. PARK
  • A. HONDA


The principle and advantages of multi-pass friction stir processing (FSP) for the production of a highly formable Mg alloy, and some convincing experimental results are reported in this paper. FSP is a solid state processing technique which involves plunging and traversing a cylindrical rotating FSP tool through the material. FSP achieved grain refinement and homogenization of the as-cast microstructure in Mg alloy AZ91D. Multi-pass FSP produced a fine homogeneous microstructure having a grain size of 2.7 μm throughout the plate. The plate containing this FSPed microstructure exhibited fracture limit major strains six times larger than the diecast plate in the fracture limit diagram (FLD). The present study shows that multi-pass FSP is an efficient production method for a large-scale plate of a highly formable Mg alloy.


Grain Size Microstructure State Processing Processing Technique Efficient Production 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. COURET and D. CAILLARD, Acta Metall. 33 (1985) 1447.Google Scholar
  2. 2.
    J. A. CHAPMAN and D. V. WILSON, J. Inst. Met. 91 (1962) 39.Google Scholar
  3. 3.
    A. YAMASHITA, Z. HORITA and T. G. LANGDON, Mater. Sci. Eng. A A300 (2001) 142.Google Scholar
  4. 4.
    T. MUKAI, M. YAMANOI, H. WATANABE and K. HIGASHI, Scripta Mater. 45 (2001) 89.Google Scholar
  5. 5.
    J. KOIKE, T. KOBAYASHI, T. MUKAI, H. WATANABE, M. SUZUKI, K. MARUYAMA and K. HIGASHI, Acta Mater. 51 (2003) 2055.Google Scholar
  6. 6.
    M. MABUCHI, Y. YAMADA, K. SHIMOJIMA, C. E. WEN, Y. CHINO, M. NAKAMURA, T. ASAHINA, H. IWASAKI, T. AIZAWA and K. HIGASHI, in “Magnesium Alloys and their Applications” (Wiley-VCH, Weinheim, Germany, 2000) p. 280.Google Scholar
  7. 7.
    S. H. C. PARK, Y. S. SATO, H. KOKAWA and T. TSUKEDA, in Proceedings of the 6th International Conference on Trends in Welding Research, edited by S. A. David, T. DebRoy, J. C. Lippold, H. B. Smartt, J. M. Vitek (Pine Mountain, Georgia, 2002) p. 267.Google Scholar
  8. 8.
    J. KOIKE, Mater. Sci. Forum 419–422 (2003) 189.Google Scholar
  9. 9.
    M. MABUCHI, T. ASAHINA, H. IWASAKI and K. HIGASHI, Mater. Sci. Technol. 13 (1997) 825.Google Scholar
  10. 10.
    R. S. MISHRA, M. W. MAHONEY, S. X. McFADDEN, N. A. MARA and A. K. MUKHERJEE, Scripta Mater. 42 (2000) 163.Google Scholar
  11. 11.
    J.-Q. SU, T. W. NELSON and C. J. STERLING, J. Mater. Res. 18 (2003) 1757.Google Scholar
  12. 12.
    P. B. BERBON, W. H. BINGEL, R. S. MISHRA, C. C. BAMPTON and M. W. MAHONEY, Scripta Mater. 44 (2001) 61.Google Scholar
  13. 13.
    M. W. MAHONEY, C. G. RHODES, J. G. FLINTOFF, R. A. SPURLING and W. H. BAMPTON, Metall. Mater. Trans. A 29A (1998) 1955.Google Scholar
  14. 14.
    Y. S. SATO, H. KOKAWA, M. ENOMOTO and S. JOGAN, Metall. Mater. Trans. 30A (1999) 2429.Google Scholar
  15. 15.
    K. V. JATA and S. L. SEMIATIN, Scripta Mater. 43 (2000) 743.Google Scholar
  16. 16.
    Y. S. SATO, S. H. C. PARK and H. KOKAWA, Metall. Mater. Trans. A 32A (2001) 3033.Google Scholar
  17. 17.
    J.-Q. SU, T. W. NELSON, R. MISHRA and M. MAHONEY, Acta Mater. 51 (2003) 713.Google Scholar
  18. 18.
    S. H. C. PARK, Y. S. SATO and H. KOKAWA, Scripta Mater. 49 (2003) 161.Google Scholar
  19. 19.
    S. H. C. PARK, Y. S. SATO, H. KOKAWA, K. OKAMOTO, S. HIRANO and M. INAGAKI, Scripta Mater. 49 (2003) 1175.Google Scholar
  20. 20.
    S. H. C. PARK, Y. S. SATO and H. KOKAWA, J. Mater. Sci. 38 (2003) 4379.Google Scholar
  21. 21.
    Y. S. SATO, H. KOKAWA, K. IKEDA, M. ENOMOTO, S. JOGAN and T. HASHIMOTO, Metall. Mater. Trans. A 32A (2001) 941.Google Scholar
  22. 22.
    D. P. FIELD, T. W. NELSON, Y. HOVANSKI and K. V. JATA, Metall. Mater. Trans. 32A (2001) 2869.Google Scholar
  23. 23.
    S. H. C. PARK, Y. S. SATO and H. KOKAWA, Metall. Mater. Trans. 34A(2003) 987.Google Scholar
  24. 24.
    H. JIN, S. SAIMOTO, M. BALL and P. L. THREADGILL, Mater. Sci. Technol. 17 (2001) 1605.Google Scholar
  25. 25.
    O. T. MIDLING and G. RORVIK, in Proceedings of the 1st International Symposium of FSW (Thousand Oaks, CA, 1999), CD-ROM.Google Scholar
  26. 26.
    Y. S. SATO, M. URATA and H. KOKAWA, Metall. Mater. Trans. A 33A (2002) 625.Google Scholar
  27. 27.
    T. U. SEIDEL and A. P. REYNOLDS, Metall. Mater. Trans. 32A (2001) 2879.Google Scholar
  28. 28.
    J. L. MURRAY, in “Phase Diagrams of Binary Magnesium Alloys” (ASM International, Ohio, 1988) p. 17.Google Scholar
  29. 29.
    S. E. ION, F. J. HUMPHREYS and S. H. WHITE, Acta Metall. 30 (1982) 1909.Google Scholar
  30. 30.
    Y. S. SATO and H. KOKAWA, Metall. Mater. Trans. A 32A (2001) 3023.Google Scholar
  31. 31.
    K. N. KRISHNAN, J. Mater. Sci. 37 (2002) 473.Google Scholar
  32. 32.
    Y. S. SATO, H. WATANABE, S. H. C. PARK and H. KOKAWA, in Proceedings of the 5st International Symposium of FSW (Metz, France, 2004) CD-ROM.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Y. S. SATO
    • 1
  • S. H. C. PARK
    • 1
    • 1
  • A. HONDA
    • 1
    • 1
  1. 1.Department of Materials Processing, Graduate School of EngineeringTohoku UniversitySendaiJapan

Personalised recommendations