Journal of Materials Science

, Volume 40, Issue 2, pp 347–353 | Cite as

Electrochemical performance of modified synthetic graphite for lithium ion batteries

  • Jung-Kyun Baek
  • Heon-Young Lee
  • Serk-Won Jang
  • Sung-Man Lee


The carbon-coated composite has been manufactured and investigated as the negative electrode for Li-ion batteries. The carbon-coated composite powders are prepared by a simple mixing of two types of synthetic graphite particles (SFG6 and SFG44) with polyvinylchloride powders and heating to a temperature between 800 and 1100°C under an argon gas flow.

As a result of the carbon-coating treatment, the flake particles of the original graphites changed into a bulky shape of carbon-coated composite with a largely increased particle size due to aggregation through the treatment. It is shown that carbon-coated composite electrodes for the two types of graphite have much lower irreversible loss than the original graphites and coulombic efficiency of ∼91% in the first cycle in a PC-based electrolyte. The carbon coating treatment improves the cycling performance. Despite their coarse morphology due to aggregation, carbon-coated composite electrodes show the enhanced high rate capabilities.


Electrochemical Performance Cycling Performance Rate Capability Composite Powder Carbon Coating 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Guerin, A. Fevrier-Bouvier, S. Flandrois, M. Couzi, B. Simon and P. Biensan, J. Electrochem. Soc. 146 (1999) 3660.Google Scholar
  2. 2.
    H. Azuma, H. Imoto, S. Uamada and K. Sekai, J. Power Sources 81/82 (1999) 1.Google Scholar
  3. 3.
    Q. Liu, T. Zhang, C. Bindra, J. E. Fischer and J. Y. Josefowicz, ibid. 68 (1997) 287.Google Scholar
  4. 4.
    M. Winter, P. Novak and A. Monnier, J. Electrochem. Soc. 145 (1998) 428.Google Scholar
  5. 5.
    H. Nakamura, H. Komatsu and M. Yoshio, J. Power Sources 62 (1996) 219.Google Scholar
  6. 6.
    W. Xing and J. R. Dahn, J. Electrochem. Soc. 144 (1997) 1195.Google Scholar
  7. 7.
    P. Yu, J. A. Ritter, R. E. White and B. N. Popov, ibid. 147 (2000) 1280.Google Scholar
  8. 8.
    I. Kuribayashi, M. Yokoyama and M. Yamashita, J. Power Sources 54 (1995) 1.Google Scholar
  9. 9.
    M. Yoshio, H. Wang, K. Fukuda, Y. Hara and Y. Adachi, J. Electrochem. Soc. 147 (2000) 1245.Google Scholar
  10. 10.
    Z. X. Shu, R. S. Mcmillan, J. S. Murray and I. J. Davidson, ibid. 142 (1995) L161.Google Scholar
  11. 11.
    G. H. Wrodnigg, T. M. Wrodnigg, J. O. Besenhard and M. Winter, Electrochem. Commun. 1 (1999) 148.Google Scholar
  12. 12.
    H. Y. Lee, J. K. Baek, S. W. Jang, S. M. Lee, S. T. Hong, K. Y. Lee and M. H. Kim, J. Power Sources 101 (2001) 206.Google Scholar
  13. 13.
    G. C. Chung, H. J. Kim, S. I. Yu, S. H. Jun, J. W. Choi and N. H. Kim, J. Electrochem. Soc. 147 (2000) 4391.Google Scholar
  14. 14.
    G. C. Chung, S. H. Jun, K. Y Lee and M. H. Kim, ibid. 146 (1999) 1664.Google Scholar
  15. 15.
    K. Zaghib, G. Nadeau and K. Kinoshita, ibid. 147 (2000) 2110.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Jung-Kyun Baek
    • 1
  • Heon-Young Lee
    • 1
  • Serk-Won Jang
    • 1
  • Sung-Man Lee
    • 1
  1. 1.Department of Advanced Materials Science and EngineeringKangwon National UniversityChuncheonSouth Korea

Personalised recommendations