Skip to main content
Log in

Electrochemical performance of modified synthetic graphite for lithium ion batteries

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The carbon-coated composite has been manufactured and investigated as the negative electrode for Li-ion batteries. The carbon-coated composite powders are prepared by a simple mixing of two types of synthetic graphite particles (SFG6 and SFG44) with polyvinylchloride powders and heating to a temperature between 800 and 1100°C under an argon gas flow.

As a result of the carbon-coating treatment, the flake particles of the original graphites changed into a bulky shape of carbon-coated composite with a largely increased particle size due to aggregation through the treatment. It is shown that carbon-coated composite electrodes for the two types of graphite have much lower irreversible loss than the original graphites and coulombic efficiency of ∼91% in the first cycle in a PC-based electrolyte. The carbon coating treatment improves the cycling performance. Despite their coarse morphology due to aggregation, carbon-coated composite electrodes show the enhanced high rate capabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Guerin, A. Fevrier-Bouvier, S. Flandrois, M. Couzi, B. Simon and P. Biensan, J. Electrochem. Soc. 146 (1999) 3660.

    Google Scholar 

  2. H. Azuma, H. Imoto, S. Uamada and K. Sekai, J. Power Sources 81/82 (1999) 1.

    Google Scholar 

  3. Q. Liu, T. Zhang, C. Bindra, J. E. Fischer and J. Y. Josefowicz, ibid. 68 (1997) 287.

    Google Scholar 

  4. M. Winter, P. Novak and A. Monnier, J. Electrochem. Soc. 145 (1998) 428.

    Google Scholar 

  5. H. Nakamura, H. Komatsu and M. Yoshio, J. Power Sources 62 (1996) 219.

    Google Scholar 

  6. W. Xing and J. R. Dahn, J. Electrochem. Soc. 144 (1997) 1195.

    Google Scholar 

  7. P. Yu, J. A. Ritter, R. E. White and B. N. Popov, ibid. 147 (2000) 1280.

    Google Scholar 

  8. I. Kuribayashi, M. Yokoyama and M. Yamashita, J. Power Sources 54 (1995) 1.

    Google Scholar 

  9. M. Yoshio, H. Wang, K. Fukuda, Y. Hara and Y. Adachi, J. Electrochem. Soc. 147 (2000) 1245.

    Google Scholar 

  10. Z. X. Shu, R. S. Mcmillan, J. S. Murray and I. J. Davidson, ibid. 142 (1995) L161.

    Google Scholar 

  11. G. H. Wrodnigg, T. M. Wrodnigg, J. O. Besenhard and M. Winter, Electrochem. Commun. 1 (1999) 148.

    Google Scholar 

  12. H. Y. Lee, J. K. Baek, S. W. Jang, S. M. Lee, S. T. Hong, K. Y. Lee and M. H. Kim, J. Power Sources 101 (2001) 206.

    Google Scholar 

  13. G. C. Chung, H. J. Kim, S. I. Yu, S. H. Jun, J. W. Choi and N. H. Kim, J. Electrochem. Soc. 147 (2000) 4391.

    Google Scholar 

  14. G. C. Chung, S. H. Jun, K. Y Lee and M. H. Kim, ibid. 146 (1999) 1664.

    Google Scholar 

  15. K. Zaghib, G. Nadeau and K. Kinoshita, ibid. 147 (2000) 2110.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung-Man Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baek, JK., Lee, HY., Jang, SW. et al. Electrochemical performance of modified synthetic graphite for lithium ion batteries. J Mater Sci 40, 347–353 (2005). https://doi.org/10.1007/s10853-005-6089-z

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-005-6089-z

Keywords

Navigation