Advertisement

Journal of Materials Science

, Volume 41, Issue 11, pp 3573–3580 | Cite as

Optical and structural properties of flash evaporated HgTe thin films

  • M. M. El-Nahass
  • F. Abd El-Salam
  • M. A. M. Seyam
Article

Abstract

Thin films of HgTe were thermally flash evaporated onto glass and quartz substrates at room temperature. The structural investigations showed that stoichiometric and amorphous films were produced. The transmittance, T, and reflectance, R, of thin films of HgTe have been measured over the wavelength ranges 300–2500 nm. From analysis of the transmittance and reflectance results, the refractive index, n, and the extinction coefficient, k, has been studied. Analysis of the refractive index yields a high frequency dielectric constant, ɛ, and the energy of the effective oscillator, Eo, the dispersion energy, Ed, the covalent value β and the M−1 and M−3 moments of the imaginary dielectric function of optical spectrum. Also, the dependence of the real part dielectric constant ɛ1(hν) on its imaginary part ɛ2(hν) of HgTe films can be used to determine the molecular relaxation time τ, the distribution parameter α\ and the macroscopic (electronic) relaxation time τo. The graphical representations of surface and volume energy loss functions, dielectric constant, the optical conductivity as well as the relaxation time as a function of photon energy revealed three transitions at 0.63, 2.21 and 2.76 eV.

Keywords

Dielectric Constant Photon Energy Absorption Index HgTe Optical Conductivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. E. HAILS, D. J. COLE-HMILTON, J. STEVENSON and W. BEH, J. Cryst. Growth. 9–45 (2000) 214.Google Scholar
  2. 2.
    A. K. JONSCHER and R. M. ITILL, Physics of Thin Films. 8 (1975) 169.Google Scholar
  3. 3.
    A. B. DJURISIC and E. H. LI, Thin Solid Films. 364 (2000) 239.CrossRefGoogle Scholar
  4. 4.
    A. B. DJURISIC, A. D. RAKIE and J. M. ELAZAR, Phys. Rev. E. 55 (1997) 4797.CrossRefGoogle Scholar
  5. 5.
    W. A. MCGAHAN, T. MAKOVICKA, J. HALLE and J. A. WOOLLAM, Thin Solid Films. 253 (1994) 57.CrossRefGoogle Scholar
  6. 6.
    S. OZAKI and S. ADACHI, J. Appl. Phys. 78 (1995) 3380.CrossRefGoogle Scholar
  7. 7.
    T. KAWASHIMA, H. YOSHIKAWA, S. ADACHI, S. FUKE and H. OHTSUKA, ibid 82 (1997) 3528.CrossRefGoogle Scholar
  8. 8.
    P. M. ARMTHARAJ, “Handbook of optical constants of solid II” (Academic Press, San Diego, CA, 1991) pp. 655–689.Google Scholar
  9. 9.
    T. NATH, S. ROY, P. SAXENA and P. C. MATHUR, J. Appl. Phys. 68 (1990) 3723.CrossRefGoogle Scholar
  10. 10.
    T. BERGUNDE, M. WIENECKE and B. THOMAS, Phys. Stat. Sol. A 121 (1990) K55.Google Scholar
  11. 11.
    L. F. LOU and W. H. FRYE, J. App. Phys. 56 (1984) 2253.CrossRefGoogle Scholar
  12. 12.
    F. RODRIGUEZ, A. CAMACHO, L. QUIROGA and R. BAQUERO, Phys. Stat. Sol. B 160 (1990) 127.Google Scholar
  13. 13.
    F. M. TONG, N. M. RAVINDRA, Infrared Phys. 34 (1993) 207.CrossRefGoogle Scholar
  14. 14.
    W. SZUSZKIEWICZ, Phys. Stat. Sol. B 79 (1977) 691.Google Scholar
  15. 15.
    S. TOLANSKY, “Multiple Beam Interference Microscopy of Metals” (Acdemic, Landon, 1980).Google Scholar
  16. 16.
    L. N. HADLEY and D. M. DENNISON, J. Opt. Soc. Amer. 37 (1974) 451.Google Scholar
  17. 17.
    Y. LAAZIZ, A. BENNOUNA, N. CHAHBOUN, A. OUTZOURHIT and E. L. AMERZIANE, Thin Solid Films. 372 (2000) 149.CrossRefGoogle Scholar
  18. 18.
    H. S. SOLIMAN, N. EL-KADRY, O. GAMJOUM, M. M. EL-NAHASS and H. B. DARWISH, India J. Optics. 17 (1972) 46.Google Scholar
  19. 19.
    B. D. MCCOMBE, R. J. WAGNER and J. S. LANNIN, Proc. XII Int. Conf. on the physics of semiconductors, Stuttgart (1974) 1176.Google Scholar
  20. 20.
    L. A. AGIEV and I. N. SHKLYAREVSKII, J. Prekl-Spekt. 76 (1972) 380.Google Scholar
  21. 21.
    H. A. MACLEOD, “Thin films Optical” (Adam Hilger, Bristol, England, 1986).Google Scholar
  22. 22.
    M. M. EL-NAHASS, H. S. SOLIMAN, N. EL-KADRY, A. Y. MORSY and S. YAGMOUR, J. Mater. Sci. Lett. 7 (1988) 1050.CrossRefGoogle Scholar
  23. 23.
    K. S. SHALIMOVA, V. A. DMITRIEV, A. S. SHMITNIKOV and A. M. GULYAEV, Sov. Phys. Crystallogr. 19 (1975) 769.Google Scholar
  24. 24.
    M. A. M. SEYAM and A. EL-FALAKY, Vacuum. 57 (2000) 31.CrossRefGoogle Scholar
  25. 25.
    A. M. SALEM, M. SOLIMAN SELIM, J. Phys. D: Appl. Phys. 34 (2001) 12.CrossRefGoogle Scholar
  26. 26.
    S. H. WEMPLE and M. DIDOMENICO, Phys. Rev. B. 3(4) (1971) 1338.CrossRefGoogle Scholar
  27. 27.
    A. S. RIAD, M. T. KORAYEM, and T. G. ABDEL-MALIK, Physica B. 270 (1999) 140.CrossRefGoogle Scholar
  28. 28.
    A. K. WALTON and T. S. MOSS, Proc. R. Soc. 81 (1963) 509.Google Scholar
  29. 29.
    D. J. CHADI, J. P. WALTER and M. L. COHEN, Phys. Rev. B. 5(8) (1972) 3058.CrossRefGoogle Scholar
  30. 30.
    H. EHRENRICH, H. R. PHILIPP and J. C. PHILIPS, Physics Rev. Lett. 8 (1962) 59.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • M. M. El-Nahass
    • 1
  • F. Abd El-Salam
    • 1
  • M. A. M. Seyam
    • 1
  1. 1.Physics Department, Faculty of EducationAin Shams UniversityRoxy, CairoEgypt

Personalised recommendations