Journal of Materials Science

, Volume 41, Issue 12, pp 3831–3835 | Cite as

In-situ synthesized Ti5Si3/TiC composites by spark plasma sintering technology



Sub-microstructured Ti5Si3/TiC composites were in-situ fabricated by through spark plasma sintering (SPS) technique using Ti and nanosized SiC powders without any additive. It was found that the composite could be sintered in a relatively short time (8 min at 1260°C) to 98.8% of theoretical density. After sintering, the phase constituents and microstructures of the samples were analyzed by X-ray diffraction (XRD) techniques and observed by scanning electron microscopy (SEM) and TEM. Fracture toughness at room temperature was also measured by indentation tests. The results showed that fracture toughness of Ti5Si3/TiC composite reached 4.2 ± 0.4 MPa.m1/2, which is higher than that of monolith Ti5Si3 (2.5 MPa.m1/2).


Fracture Toughness Spark Plasma Sinter Indentation Test Spark Plasma Sinter Method Indentation Fracture Toughness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. SANDWICK and K. RAJAN, J. Electr. Mater. 19 (1990) 1193.Google Scholar
  2. 2.
    D. M. SHAH, D. BERCZIK, D. L. ALTON and R. HECHT, Mater. Sci. Eng. A152 (1992) 45.Google Scholar
  3. 3.
    P. J. COUNIHAN, A. CRAWFORD and N. N. THADHANI, ibid. A267 (1999) 26.Google Scholar
  4. 4.
    A. K. BHATTACHARYA, J. Am. Ceram. Soc. 74 (1991) 2707.CrossRefGoogle Scholar
  5. 5.
    B. K. YEN, T. AIZAWA, J. KIHARA, ibid. Sci. 81 (1998) 1953.CrossRefGoogle Scholar
  6. 6.
    B. R. KRUEGER, A. H. MUTZ and T. VREELAND, Metall. Trans. A. 23 (1992) 55.Google Scholar
  7. 7.
    S. C. DEEVI and N. NARESH, Mater. Sci. Eng. A192/193 (1995) 604.Google Scholar
  8. 8.
    K. S. MIN, AREDELL, A. J. ECK and F. C. DHEN. J. Mater. Sci. 30 (1995) 5479.CrossRefGoogle Scholar
  9. 9.
    L. L. WANG and Z. A. MUNIR, Metall. Mater. Trans. B. 26B (1995) 595.Google Scholar
  10. 10.
    L. ZHANG and J. WU, Acta Mater. 46 (1998) 3535.CrossRefGoogle Scholar
  11. 11.
    I. J. SHON, H. C. KIM, D. H. RHO, Z. A. MUNIR, Mater. Sci. Eng. A269 (1999) 129.Google Scholar
  12. 12.
    R. MITRA, Metall. Mater. Trans. A. 29A (1998) 1629.Google Scholar
  13. 13.
    J. L. LI, D. JIANG, S. TAN, J. Eur, Ceram. Soc. 22 (2002) 551.CrossRefGoogle Scholar
  14. 14.
    L. J. WANG, W. JIANG and L. D. CHEN, Mater. Lett. 58 (2004) 1401.CrossRefGoogle Scholar
  15. 15.
    L. J. WANG, W. JIANG, L. D. CHEN and S. Q. BAI, J. Am. Ceram. Soc. 87 (2004) 1157.CrossRefGoogle Scholar
  16. 16.
    J. WAN, M. J. GASCH, A. K. MUKHERJEE, ibid. 86 (2003) 526.CrossRefGoogle Scholar
  17. 17.
    L. J. WANG, W. JIANG and L. D. CHEN, J. Mater. Sci. 39 (2004) 4515.CrossRefGoogle Scholar
  18. 18.
    H. KAGA, E. M. HEIAN and Z. A. MUNIR, J. Am. Ceram. Soc. 84 (2003) 2764.CrossRefGoogle Scholar
  19. 19.
    P. GREIL, Adv. Mater. 14 (2002) 709.CrossRefGoogle Scholar
  20. 20.
    Z. F. ZHANG, Z. M. SUN, H. HASHIMOTO, and T. ABE, Scripta. Mater. 45 (2001) 1461.CrossRefGoogle Scholar
  21. 21.
    G. R. ANTIS, P. CHANTIKUL, B. R. LAWN, D. B. MARSHALL,. J. Am. Ceram. Soc. 64 (1981) 533.CrossRefGoogle Scholar
  22. 22.
    K. S. CHO, Y. W. KIM, H. J. CHOI, J. G. LEE, J. Mater. Sci. 31 (1996) 6223.CrossRefGoogle Scholar
  23. 23.
    A. K. BHATTACHARYA, J. Am. Ceram. Soc. 74 (1991) 2707.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • Lianjun Wang
    • 1
  • Wan Jiang
    • 1
  • Chao Qin
    • 1
  • Lidong Chen
    • 1
  1. 1.The State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsShanghaiChina

Personalised recommendations