Journal of Materials Science

, Volume 40, Issue 22, pp 5955–5962 | Cite as

Analysis of the mechanical behavior of woven fibrous material using virtual tests at the unit cell level

  • Philippe Boisse
  • Alain Gasser
  • Benjamin Hagege
  • Jean-Louis Billoet
Mechanical Behavior of Cellular Solids


The determination of the mechanical properties of fabrics in biaxial tension and in-plane shearing is made from 3D finite element analyses of the unit woven cell. Compared to experimental tests these virtual tests have several advantages. They can easily be carried out for sets of varied parameters, they provide local information inside the woven material and above all they can be performed on woven materials that have not yet been manufactured. The 3D computations are not classical analyses because the yarns are made up of several thousands of fibres and their mechanical behaviour is very special. Several specific aspects of the analysis are detailed, especially the use of a hypoelastic law based on an objective derivative using the rotation of the fibre which allows a strict evolution of the directions of orthotropy according to the fibre direction. Examples of analyses are presented in biaxial tension and in-plane shear for woven reinforcements and in the case of the biaxial tension of a knitted fabric. The results obtained are in good agreement with experimental results.


Polymer Finite Element Analysis Mechanical Behavior Experimental Test Varied Parameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. DE LUCA, P. LEFEBURE and A. K. PICKETT, Composites: Part A 29 (1998) 101.CrossRefGoogle Scholar
  2. 2.
    S.-W. HSIAO and N. KIKUCHI, Comput. Meth. Appl. Mech. Engng. 177 (1999) 1.CrossRefGoogle Scholar
  3. 3.
    P. BOISSE, A. GASSER and G. HIVET, Composites Part A 32 (2001) 1395.CrossRefGoogle Scholar
  4. 4.
    A. G. PRODROMOU and J. CHEN, Ibid. 28 (1997) 491.CrossRefGoogle Scholar
  5. 5.
    T. M. MCBRIDE and J. CHEN, Compos. Sci. Technol. 57 (1997) 345.CrossRefGoogle Scholar
  6. 6.
    G. B. MCGUINNESS and C. M. O. O'BRADAIGH, Composites Part A 29(1–2) (1998) 115.CrossRefGoogle Scholar
  7. 7.
    K. BUET-GAUTIER and P. BOISSE, Experiment. Mech. 41 (2001) 260.Google Scholar
  8. 8.
    T. G. ROGERS, Composites 20 (1989) 21.CrossRefGoogle Scholar
  9. 9.
    A. J. M. SPENCER, Composites Part A 31 (2000) 1311.CrossRefGoogle Scholar
  10. 10.
    P. XUE, X. PENG and J. CAO, Ibid., 34 (2003) 183.CrossRefGoogle Scholar
  11. 11.
    S. KAWABATA, M. NIWA and H. KAWAI, J. Textile. Inst.. 64 (1973) 21.Google Scholar
  12. 12.
    T. V. SAGAR, P. POTLURI P. and J. W. S. HEARLE, Comput. Mater. Sci. 28 (2003) 49.CrossRefGoogle Scholar
  13. 13.
    B. BEN BOUBAKER, B. HAUSSY and J. F. GANGHOFFER, Comptes-rendus à l’Académie des Sciences de Paris, Série Mécanique 330 (2002) 871.Google Scholar
  14. 14.
    B. BEN BOUBAKER, B. HAUSSY and J. F. GANGHOFFER, Finite Element European Revue, to appearGoogle Scholar
  15. 15.
    J. L. DANIEL, D. SOULAT and P. BOISSE, Proceedings of the Seventh International ESAFORM conference on Material Forming, Trondheim (Norway), (2004) 301.Google Scholar
  16. 16.
    P. BOISSE, B. ZOUARI and A. GASSER, Compos. Sci. Technol. 65 (2005) 429.CrossRefGoogle Scholar
  17. 17.
    J. PAGE and J. WANG, ibid. 60 (2000) 977.CrossRefGoogle Scholar
  18. 18.
    U. MOHAMMED, C. LEKAKOU, L. DONG and M. BADER, Composites Part A 31 (2000) 299.CrossRefGoogle Scholar
  19. 19.
    M. NGUYEN, I. HERSZBERG and R. PATON, Compos. Structur.r 47 (1999) 767.CrossRefGoogle Scholar
  20. 20.
    P. HARRISON, M. J. CLIFFORD, A. C. LONG, Compos. Sci. Technol. 64 (2003) 1453.CrossRefGoogle Scholar
  21. 21.
    A. C. LONG, Int. J. Forming Process. 4(3–4) (2002) 285.Google Scholar
  22. 22.
    P. VACHER, S. DUMOULIN and R. ARRIEUX, ibid. 2(3–4) (1999) 395.Google Scholar
  23. 23.
    F. DUMONT, G. HIVET, R. ROTINAT, J. LAUNAY, P. BOISSE and P. VACHER, Mécanique et Industries 4 (2003) 627.CrossRefGoogle Scholar
  24. 24.
    D. S. SCHNUR and N. ZABARAS, Int. J Numer. Meth Engng. 33 (1992) 2039.CrossRefGoogle Scholar
  25. 25.
    A. GASSER, P. BOISSE and S. HANKLAR, Comput. Mater. Sci. 17 (2000) 7.CrossRefGoogle Scholar
  26. 26.
    D. P. FLANAGAN and T. BELYTSCHKO, Int. J Numer. Meth. Engng. 17 (1981) 679.CrossRefGoogle Scholar
  27. 27.
    Y. F. DAFALIAS, Trans. ASME, J. Ap. Mech. 50 (1983) 561.Google Scholar
  28. 28.
    P. GILORMINI, P. ROUDIER and P. ROUGEE, Comptes-rendus à l’Académie des Sciences de Paris 316(II), (1993) 1659.Google Scholar
  29. 29.
    J. K. DIENES, Acta Mechanica 32 (1979) 217.CrossRefGoogle Scholar
  30. 30.
    M. A. CRISFIELD, “Non Linear Finite Element Analysis of Solids and Structures, Volume II: Advanced Topics” (John Wiley & Sons, England, 1991).Google Scholar
  31. 31.
    R. JONES, “Mechanics of Composite Materials” (Taylor and Francis, London, 1998).Google Scholar
  32. 32.
    T. G. GUTOWSKI, SAMPE Quart. 16(4) (1985), 58.Google Scholar
  33. 33.
    C. BAOXING and T. W. CHOU, Compos. Sci. Technol. 59 (1999), 1519.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc 2005

Authors and Affiliations

  • Philippe Boisse
    • 1
  • Alain Gasser
    • 2
  • Benjamin Hagege
    • 2
  • Jean-Louis Billoet
    • 2
  1. 1.Laboratoire de Mécanique des Contacts et des Solides UMR CNRS 5514INSA de Lyon, Bâtiment Jacquard, Rue Jean CapelleVilleurbanne CedexFrance
  2. 2.Laboratoire de Mécanique de Systèmes et des ProcédésUMR CNRS 8106, ENSAM-Université d'OrléansOrléans CedexFrance

Personalised recommendations