Advertisement

Journal of Materials Science

, Volume 40, Issue 19, pp 5133–5137 | Cite as

Elongational rheology of fiber forming polymers

  • J. Collier
  • S. Petrovan
  • P. Patil
  • B. Collier
Article

Abstract

The elongational rheology of some fiber forming polymers, such as polypropylene (PP), polyethylene (PE), nylon 66, and lyocell (cellulose dissolved in N-Methylmorpholine/water) solutions, has been characterized using hyperbolic convergent dies in a capillary rheometer, at different Hencky strains, processing temperatures, and as a function of elongational strain rates up to 600 s− 1. The influence of melt flow rate (MFR) and molecular parameters is studied and it is shown that the elongational viscosity curves can be shifted with respect to both temperature and Hencky strain.

Keywords

Polymer Viscosity Cellulose Polyethylene Nylon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. ZIABICKI, in “Fundamentals of Fiber Formation. The Science of Fiber Spinning and Drawing” (John Wiley & Sons, 1976).Google Scholar
  2. 2.
    A. ZIABICKI and H. KAWAI, in “High-Speed Fiber Spinning. Science and Engineering” (John Wiley & Sons, 1985).Google Scholar
  3. 3.
    N. HAJJI, J. E. SPRUIELL, F. M. LU, S. MALKAN and G. C. RICHARDSON, INDA J. Nonwov. Res. 4 (1991) 16.Google Scholar
  4. 4.
    S. PETROVAN, Unpublished results, 2000.Google Scholar
  5. 5.
    J. R. COLLIER, Unpublished results, 2002.Google Scholar
  6. 6.
    J. MEISSNER, Rheol. Acta. 8 (1969) 78.Google Scholar
  7. 7.
    Idem., ibid. 10 (1971) 230.CrossRefGoogle Scholar
  8. 8.
    Idem., Trans. Soc. Rheol. 16 (1972) 405.CrossRefGoogle Scholar
  9. 9.
    Idem., J. Appl. Polym. Sci. 16 (1972) 2877.CrossRefGoogle Scholar
  10. 10.
    J. MEISSNER, T. RAIBLE and S. E. STEPHENSON, J. Rheol. 25 (1981) 1.CrossRefGoogle Scholar
  11. 11.
    J. MEISSNER and J. HOSTETTLER, Rheol. Acta. 33 (1994) 1.CrossRefGoogle Scholar
  12. 12.
    J. R. COLLIER, US Patent 5,357,784 (1994).Google Scholar
  13. 13.
    J. R. COLLIER, O. ROMANOSCHI and S. PETROVAN, J. Appl. Polym. Sci. 69 (1998) 2357.CrossRefGoogle Scholar
  14. 14.
    S. PETROVAN, J. R. COLLIER and G. H. MORTON, ibid. 77 (2000) 1369.CrossRefGoogle Scholar
  15. 15.
    S. PETROVAN, J. R. COLLIER and I. I. NEGULESCU, ibid. 79 (2001) 396.CrossRefGoogle Scholar
  16. 16.
    J. R. COLLIER, US Patent 6,220,083, 2001.Google Scholar
  17. 17.
    B. SEYFSADEH and J. R. COLLIER, J. Appl. Polym. Sci. 79 (2001) 2170.CrossRefGoogle Scholar
  18. 18.
    S. PETROVAN, I. I. NEGULESCU and J. R. COLLIER, Cell. Chem. Technol. 35 (2001) 89.Google Scholar
  19. 19.
    J. R. COLLIER, S. PETROVAN and P. PATIL, J. Appl. Polym. Sci. 87 (2003) 1387.CrossRefGoogle Scholar
  20. 20.
    Idem., ibid. 87 (2003) 1397.CrossRefGoogle Scholar
  21. 21.
    K. FEIGL, F. X. TANNER, B. J. EDWARDS and J. R. COLLIER, J. Non-Newton. Fluid Mech. 115 (2003) 191.CrossRefGoogle Scholar
  22. 22.
    D. BECKER and C. ROHN, Unpublished results, Rheometric Scientific, 2000.Google Scholar
  23. 23.
    P. HACHMANN and J. MEISSNER, J. Rheol. 47 (2003) 989.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • J. Collier
    • 1
  • S. Petrovan
    • 1
  • P. Patil
    • 1
  • B. Collier
    • 2
  1. 1.Chemical EngineeringThe University of TennesseeKnoxvilleUSA
  2. 2.Materials Science and EngineeringThe University of TennesseeKnoxvilleUSA

Personalised recommendations