Journal of Materials Science

, Volume 40, Issue 18, pp 4881–4887 | Cite as

Acrylic scaffolds with interconnected spherical pores and controlled hydrophilicity for tissue engineering

  • R. B. Diego
  • M. P. Olmedilla
  • Á S. Aroca
  • J. L. G. Ribelles
  • M. M. Pradas
  • G. G. Ferrer
  • M. S. Sánchez


Polymer scaffolds are obtained in which the geometric characteristics (pore size, connectivity, porosity) and the physico-chemical properties of the resulting material can be controlled in an independent way. The interconnected porous structure was obtained using a template of sintered PMMA microspheres of controlled size. Copolymerization of hydrophobic ethyl acrylate and hydrophilic hydroxyethyl methacrylate comonomers took place in the free space of the template, different comonomer ratio gave rise to different hydrophilicity degrees of the material keeping the same pore architecture. The morphology of the resulting scaffolds was investigated by scanning electron microscopy (SEM), the porosity of the material calculated, and the mechanical properties compared with those of the bulk (non porous) material of the same composition.


Porosity Porous Structure PMMA Methacrylate Tissue Engineering 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. LANGER and J. P. VACANTI, Science 260 (1993) 920.Google Scholar
  2. 2.
    D. W. HUTMACHER, Biomaterials 21 (2000) 2529.CrossRefGoogle Scholar
  3. 3.
    J. S. TAKEOFF and A. G. MIKES, Biomaterials 21 (2000) 431.Google Scholar
  4. 4.
    T. M. FREEMAN, I. V. YANKS and L. J. GIBSON, Prig. Mater. Sci. 46 (2001) 273.Google Scholar
  5. 5.
    L. E. FREED, A. P. HOLLANDER, I. MARTIN, L. R. BARRY and G. VUNJAK-NOVAKOVIC, Exp. Cell. Res. 240 (1998) 58.CrossRefGoogle Scholar
  6. 6.
    N. S. DUNKELMAN, M. P. ZIMBER, R. G. LEBARON, R. PAVELEC, M. KWAN and A. F. PURCHIO, Biotechn. Bioeng. 46 (1995) 299.Google Scholar
  7. 7.
    J. J. ROSEN and M. B. SCHWAY, Polym. Sci. Technol. 12B (1980) 667.Google Scholar
  8. 8.
    T. A. HORBETT, M. B. SCHWAY and B. D. RATNER, J. Colloid Interf. Sci. 104 (1985) 28.Google Scholar
  9. 9.
    L. DE BARTOLO, S. MORELLI, A. BADER and E. DRIOLI, Biomaterials 23 (2002) 2485.Google Scholar
  10. 10.
    R. SINGHVI, G. STEPHANOPOULOUS and D. I. C. WANG, Biotechnol. Bioeng. 43 (1994) 764.CrossRefGoogle Scholar
  11. 11.
    M. J. LYDON, T. W. MINETT and B. J. TIGHE, Biomaterials 6 (1985) 396.CrossRefGoogle Scholar
  12. 12.
    G. B. SCHNEIDER, A. ENGLISH, M. ABRAHAM, R. ZAHARIAS, C. STANFORD and J. KELLER, Biomaterials. 25 (2004) 3023.CrossRefGoogle Scholar
  13. 13.
    G. M. BRUINSMA, H. C. VAN DER MEI and H. J. BUSSCHER, Biomaterials. 22 (2001) 3217.CrossRefGoogle Scholar
  14. 14.
    G. MABILLEAU, M. F. MOREAU, R. FILMON, M. F. BASLÉ and D. CHAPPARD, Biomaterials. 25 (2004) 5155.CrossRefGoogle Scholar
  15. 15.
    G. PELUSO, O. PETILLO, M. J. ANDERSON, M. AMBROSIO, L. NICOLAIS, M. A. B MELONE, F. O. ESCHBACH and S. J. HUANG. J. Biomed. Mater. Res. 142 (1997) 83.Google Scholar
  16. 16.
    A. SCHIRALDI, A. D'AGOSTINO, A. OLIVA, F. FLAMMA, A. DE ROSA, A. APICELLA, R. AVERSA and M. DE ROSA, Biomaterials 25 (2004) 3645.CrossRefGoogle Scholar
  17. 17.
  18. 18.
    T. V. CHIRILA, Biomaterials 22 (2001) 3311.CrossRefGoogle Scholar
  19. 19.
    L. FLYNN, P. D. DALTON and M. S. SHOICHET, Biomaterials. 24 (2003) 4265.CrossRefGoogle Scholar
  20. 20.
    S. WOERLY, G. W. PLANT and A. R. HARVEY, Biomaterials 17 (1996) 301.CrossRefGoogle Scholar
  21. 21.
    R. Y. ZHANG and P. X. MA, J. Biomed. Mater. Res. 52 (2000) 430.CrossRefGoogle Scholar
  22. 22.
    P. X. MA and J. W. CHOI, Tissue Eng. 7 (2001) 23.Google Scholar
  23. 23.
    K. ARORA, A. LESSER and T. MCCARTHY, Polym. Engng. Sci. 38 (1998) 2055.Google Scholar
  24. 24.
    R. C. THOMSON, M. C. WAKE, M. J. YASZEMSKI and A. G. MIKOS, Adv. Polym. Sci. 122 (1995) 245.Google Scholar
  25. 25.
    M. ARICA and V. HASIRCI, Polym. Intern. 32 (1993) 177.Google Scholar
  26. 26.
    G. ANDRIANOVA and S. PARKHOMOV, Polym. Engng. Sci. 37 (1997) 1367.Google Scholar
  27. 27.
    O. OKAY, J. Appl. Polym. Sci. 74, (1999) 2181; O. OKAY, Prog. Polym. Sci. 25 (2000) 711.Google Scholar
  28. 28.
    L. SHAPIRO and S. COHEN, Biomaterials 18 (1997) 583.CrossRefGoogle Scholar
  29. 29.
    S. W. SONG and J. TORKELSON, Macromolecules 27 (1994) 6389.Google Scholar
  30. 30.
    L. LU and A. G. MIKOS, MRS Bull. 11 (1996) 28.Google Scholar
  31. 31.
    R. C. THOMSON, M. J. YASZEMSKI and A. G. MIKOS, in “Principles of Tissue Engineering” (Academic Press, New York, 2000) p. 251.Google Scholar
  32. 32.
    T. CAO, K. H. HO and S. H. TEOH, Tissue Engng. 9 (2003) S103.Google Scholar
  33. 33.
    R. A. GIORDANO, B. M. WU, S. W. BORLAND, L. G. CIMA, E. M. SACHS and M. J. CIMA, J. Biomater. Sci. Polym. 8 (1996) 63.Google Scholar
  34. 34.
    V. J. CHEN and P. X. MA, Biomaterials 25 (2004) 2065.Google Scholar
  35. 35.
    Z. MA, C. Y. GAO, Y. H. GONG and J. C. SHEN, J. Biomed. Mater. Res. 67B (2003) 610.CrossRefGoogle Scholar
  36. 36.
    K. A. GROSS and L. M. RODRIGUES-LORENZO, Biomaterials 25 (2004) 4955.Google Scholar
  37. 37.
    J. P. MONTÉARD, M. CHATZOPOULOS and D. CHAPPARD, J. Macromol. Sci. Macromol. Rev. 32 (1992) 1.Google Scholar
  38. 38.
    M. SALMERÓN SÁNCHEZ, R. BRÍGIDO DIEGO, S. A. M. IANAZZO, M. MONLEÓN PRADAS and J. L. GÓMEZ RIBELLES, Polymer 45 (2004) 2349.Google Scholar
  39. 39.
    J. L. DRURY and D. J. MOONEY, Biomaterials 24 (2003) 4337.CrossRefGoogle Scholar
  40. 40.
    L. GIBSON and M. F. ASHBY, in “Cellular Solids. Structure and Properties” 2nd ed. (Cambridge University Press, Cambridge, 2001).Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • R. B. Diego
    • 1
  • M. P. Olmedilla
    • 1
  • Á S. Aroca
    • 1
  • J. L. G. Ribelles
    • 1
  • M. M. Pradas
    • 1
  • G. G. Ferrer
    • 1
  • M. S. Sánchez
    • 1
  1. 1.Center for BiomaterialsUniversidad Politécnica de ValenciaValenciaSpain

Personalised recommendations