Advertisement

Journal of Materials Science

, Volume 40, Issue 14, pp 3777–3782 | Cite as

Study of correlation of structural and surface properties with electrochemical behaviour in carbon aerogels

  • N. Hebalkar
  • G. Arabale
  • S. R. Sainkar
  • S. D. Pradhan
  • I. S. Mulla
  • K. Vijayamohanan
  • P. Ayyub
  • S. K. Kulkarni
Article

Abstract

Carbon aerogel is a promising material for electrochemical double layer capacitors. In this paper carbon aerogels prepared by subcritical drying method are investigated for the change in the structure and surface properties at different pyrolysis temperatures. The important relations between structure, morphology, surface area and electrical properties were studied using X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), surface area measurement and cyclic voltametry. It is shown that structure and the surface functional groups play important role in enhancement of electrochemical capacitance. The specific capacitance achieved was 114 F/gm which is quite large value for subcritically prepared carbon aerogels without any kind of activation process.

Keywords

Pyrolysis Double Layer Surface Property Specific Capacitance Activation Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. ARBIZZANI, M. MASTRAGOSTINO and F. SOAVI, J. Power Sourc. 100 (2001) 164.CrossRefGoogle Scholar
  2. 2.
    R. A. HUGGINS, Solid State Ion. 134 (2000) 179.CrossRefGoogle Scholar
  3. 3.
    R. KOTZ and M. CARLEN, Electrochimica Acta 45 (2000) 2483.CrossRefGoogle Scholar
  4. 4.
    M. WOHLFAHRT-MEHRENS, J. SCHENK, P. M. WILDE, E. ABDELMULA, P. AXMANN and J. GARCHE, J. Power Sourc. 105 (2002) 80.Google Scholar
  5. 5.
    ELZBIETA FRACKOWIAK and FRANÇOIS BÉGUIN, Carbon 39 (2001) 937.CrossRefGoogle Scholar
  6. 6.
    L. BONNEFOI, P. SIMON, J. F. FAUVARQUE, C. SARRAZIN and A. DUGAST, J. Power Sourc. 79 (1999) 37.CrossRefGoogle Scholar
  7. 7.
    HANSUNG KIM and BRANKO N. POPOV, ibid. 104 (2002) 52.CrossRefGoogle Scholar
  8. 8.
    CHUNMING NIU, ENID K. SICHEL, ROBERT HOCH, DAVID MOY and HOWARD TENNENT, Appl. Phys. Lett. 70 (1997) 1480.CrossRefGoogle Scholar
  9. 9.
    SOUMYADEB GHOSH and OLLE INGANAS, Adv. Mater. 11 (1999) 1214.CrossRefGoogle Scholar
  10. 10.
    J. GAMBY, P. L. TABERNA, P. SIMON, J. F. FAUVARQUE and M. CHESNEAU J. Power Sourc. 101 (2001) 109.CrossRefGoogle Scholar
  11. 11.
    CHI-CHANG HU and CHEN-CHING WANG, Electrochem. Comm. 4 (2002) 554.CrossRefGoogle Scholar
  12. 12.
    R. W. PEKALA, S. T. MAYER, J. L. KASCHMITTER and F. M. KONG, in “Sol Gel Processing and Applications,” edited by Yosry A. Attita (Plenum Press, New York and London).Google Scholar
  13. 13.
    S. T. MAYER, R. W. PEKALA and J. L. KASCHMITTER, J. Electrochem. Soc. 140 (1993) 446.Google Scholar
  14. 14.
    U. FISCHER, R. SALIGER, V. BOCK, R. PETRICEVIC and J. FRICKE, J. Porous Mat. 4 (1997) 281.CrossRefGoogle Scholar
  15. 15.
    J. M. MILLER and B. DUNN, J. Electrochem. Soc. 114 (1997) L309.Google Scholar
  16. 16.
    R. W. PEKALA, J. C. FARMER, C. T. ALVISO, T. D. TRAN, S. T. MAYER, J. M. MILLER and B. DUNN, J. Non. Cryst. Sol. 225 (1998) 74.CrossRefGoogle Scholar
  17. 17.
    J. M. MILLER and B. DUNN, Langmuir 15 (1999) 799.CrossRefGoogle Scholar
  18. 18.
    C. SCHMITT, H. PRÖBSTTE and J. FRICKE, J. Non Cryst. Sol. 285 (2001) 277.CrossRefGoogle Scholar
  19. 19.
    R. SALIGER, U. FISCHER, C. HERTA and J. FRICKE, ibid. 225 (1998) 81.CrossRefGoogle Scholar
  20. 20.
    Y. HANZAWA, K. KANEKO, R. W. PEKALA and M. S. DRESSELHAUS, Langmuir 12 (1996) 6167.CrossRefGoogle Scholar
  21. 21.
    R. SALIGER, V. BOCK, R. PETRICEVIC, T. TILLOTSON, S. GEIS and J. FRICKE, J. Non Cryst. Sol. 221 (1997) 144.CrossRefGoogle Scholar
  22. 22.
    NEHA HEBALKAR and S. K. KULKARNI, Phys. Edu. 118 (2001) 61.Google Scholar
  23. 23.
    C. LIN and J. A. RITTER, Carbon 38 (2000) 849.CrossRefGoogle Scholar
  24. 24.
    C. LIN, J. A. RITTER and B. N. POPOV, J. Electrochem. Soc. 146 (1999) 3639–3643.CrossRefGoogle Scholar
  25. 25.
    ELZBIETA FRACKOWIAK and FRANÇOIS BÉGUIN, Carbon 39 (2001) 937.CrossRefGoogle Scholar
  26. 26.
    R. W. PEKALA, J. Mat. Sci. 24 (1989) 3221.CrossRefGoogle Scholar
  27. 27.
    R. W. PEKALA and C. T. ALVISO, Mater. Res. Soc. Symp. Proc. 270 (1992) 3.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • N. Hebalkar
    • 1
  • G. Arabale
    • 2
  • S. R. Sainkar
    • 2
  • S. D. Pradhan
    • 2
  • I. S. Mulla
    • 2
  • K. Vijayamohanan
    • 2
  • P. Ayyub
    • 3
  • S. K. Kulkarni
    • 4
  1. 1.Department of PhysicsUniversity of PunePuneIndia
  2. 2.National Chemical LaboratoryPuneIndia
  3. 3.Tata Institute of Fundamental ResearchMumbaiIndia
  4. 4.Department of PhysicsUniversity of PunePuneIndia

Personalised recommendations