Advertisement

Journal of Materials Science

, Volume 40, Issue 13, pp 3461–3466 | Cite as

Simulation of clusters formation in Al-Cu based and Al-Zn based alloys

  • Daqin Chen
  • Yuansheng WangEmail author
Article

Abstract

A Monte Carlo computer simulation is adopted to investigate the role of micro-alloying elements Mg and Ag in Al-Cu and Al-Zn alloys. Small amount additions of Mg to the Al-Cu alloy markedly retard the formation of Cu clusters due to the preferential trapping of free-vacancies available for Cu diffusion. On the other hand, additions of Mg to the Al-Zn alloy promote the formation of Zn clusters due to the preferential Mg-Zn interaction. As for the effect of Ag, it is found that, in both Al-Cu-Mg and Al-Zn-Mg alloys, Ag atoms are preferentially bounded to Mg-Cu-vacancy or Mg-Zn-vacancy complexes. However, in Al-Cu-Mg alloy Ag atoms interact with Mg, while in Al-Zn-Mg alloy they interact with both Mg and Zn.

Keywords

Polymer Computer Simulation Monte Carlo Computer Simulation Cluster Formation Base Alloy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. P. RINGER and K. RAVIPRASAD, Mater. Forum 24 (2000) 59.Google Scholar
  2. 2.
    L. REICH, M. MURAYAMA and K. HONO, Acta Mater. 46 (1998) 6053.Google Scholar
  3. 3.
    J. T. VIETZ, K. R. SARGANT and I. J. POLMEAR, J. Inst. Metals 92 (1963–64) 327.Google Scholar
  4. 4.
    I. J. POLMEAR, Nature 186 (1960) 303.Google Scholar
  5. 5.
    I. J. POLMEAR, J. Inst. Metals 89 (1960–61) 51.Google Scholar
  6. 6.
    S. K. MALONEY, I. J. POLMEAR and S. P. RINGER, Micron 32 (2001) 741.Google Scholar
  7. 7.
    S. HIROSAWA, T. SATO, A. KAMIO and H. M. FLOWER, Acta Mater. 48 (2000) 1797.Google Scholar
  8. 8.
    A. W. ZHU, B. M. GABLE, G. J. SHIFLET and E. A. STARKE, Acta Mater. 52 (2004) 3671.Google Scholar
  9. 9.
    D. RABBE, “Computational Materials Science: The Simulation of Materials Microstructure and Properties” (Wiley, VCH, Weinheim, 1998).Google Scholar
  10. 10.
    R. FURTH, Proc. Roy. Soc (A) 183 (1944) 87.Google Scholar
  11. 11.
    J. M. SANCHEZ, J. R. BAREFOOT, R. N. JARRETT and J. K. TIEN, Acta Metall. 32 (1984) 1519.Google Scholar
  12. 12.
    S. HIROSAWA, T. SATO, J. YOKOTA and A. KAMIO, JIM 39 (1998) 139.Google Scholar
  13. 13.
    M. DOYAMA and J. S. KOEHLER, Acta Metal. 24 (1976) 871.Google Scholar
  14. 14.
    S. HIROSAWA and T. SATO, JIM 39 (1998) 139.Google Scholar
  15. 15.
    SOMOZA, et al., Phys. Rev. B 61 (2000) 14464.Google Scholar
  16. 16.
    I. J. POLMEAR and J. T. VIETZ, J. Inst. Metals 94 (1966) 410.Google Scholar
  17. 17.
    A. GARG, Y. C. CHANG and J. M. HOWE, Scripta Metall Mater 24 (1990) 677.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Fujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhou FujianPeoples’s Republic of China

Personalised recommendations