Advertisement

Journal of Materials Science

, Volume 40, Issue 13, pp 3355–3359 | Cite as

Effect of surface treatment of carbon fibers with gamma-ray radiation on mechanical performance of their composites

  • Y. Z. WanEmail author
  • Y. L. Wang
  • Y. Huang
  • H. L. Luo
  • G. C. Chen
  • C. D. Yuan
Article

Abstract

Gamma-ray radiation was used to surface treat PAN carbon fibers. The efficiency of gamma-ray radiation was compared with air oxidation in terms of variations in the surface structure of carbon fibers and the mechanical performance of their composites. It was observed that the composites reinforced with the gamma-radiated carbon fibers showed higher interfacial adhesion strength and thus better flexural and shear properties than the composites reinforced with air-treated fibers. The observed higher content of carboxyl group on the surface of the gamma-radiated carbon fibers is likely to be responsible for the stronger fiber-matrix bonding. It is concluded that gamma-ray radiation is an effective approach of tailoring surface properties of carbon fibers.

Keywords

Polymer Carboxyl Carbon Fiber Surface Property Surface Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. DILSIZ, N. K. ERINC, E. BAYRAMLI and G. AKOVALI, Carbon 33 (1995) 853.Google Scholar
  2. 2.
    Y. Z. WAN, Y. L. WANG, F. G. ZHOU, G. X. CHENG and K. Y. HAN, J. Appl. Polym. Sci. 85 (2002) 1040.Google Scholar
  3. 3.
    A. D. JANNAKOUDAKIS, P. D. JANNAKOUDAKIS, E. THEODRIDOU and J. O. BESENHARD, J. Appl. Electrochem. 20 (1990) 619.Google Scholar
  4. 4.
    Z. WU, JR. PITTMAN, U. CHARLES and S. D. GARDNER, Carbon 33 (1995) 597.Google Scholar
  5. 5.
    S. BLAZEWICZ, J. PIEKARCZYK, J. CHLOPEK, J. BLOCKI, J. MICHALOWSKI, M. STODULSKI and P. ZYCHOWSKI, Carbon 40 (2002) 721.Google Scholar
  6. 6.
    T. D. BURCHELL and W. P. EATHERLY, J. Nucl. Mater. 179 (1991) 205.Google Scholar
  7. 7.
    T. CZVIKOVSZKY, H. HARGITAI, I. RACZ and G. CSUKAT, Nucl. Instr. Methods Phys. Res. B-Beam Interactions Mater. Atoms 151 (1999) 190.Google Scholar
  8. 8.
    Y. L. WANG, Y. Z. WAN, B. M. HE, Z. Q. ZHANG and K. Y. HAN, J. Mater. Sci. 39 (2004) 1491.Google Scholar
  9. 9.
    L. Y. ZHENG, Y. L. WANG, Y. Z. WAN, F. G. ZHOU and X. H. DONG, J. Mater. Sci. Lett. 21 (2002) 987.Google Scholar
  10. 10.
    Y. Z. WAN, Y. L. WANG, G. X. CHENG and K. Y. HAN, J. Appl. Polym. Sci. 85 (2002) 1031.Google Scholar
  11. 11.
    J. S. LEE and T. J. KANG, Carbon 35 (1997) 209.Google Scholar
  12. 12.
    W. H. LEE, J. G. LEE and P. J. REUCROFT, Appl. Surf. Sci. 171 (2001) 136.Google Scholar
  13. 13.
    Z. Q. ZHANG, Study on Mechanical Properties of 3D Braided Fibers Reinforced Monomer Casting Polyamide, Master’s Thesis, Tianjin Univertiy, 2003.Google Scholar
  14. 14.
    S. X. ZHU in (ed). “Ring-opening Polymerization” (Chemical Industry Publisher, Beijing, 1987) p. 223.Google Scholar
  15. 15.
    S. V. NAIR, M. L. SHIAO and P. D. GARRET, J. Mater. Sci. 27 (1992) 1085.Google Scholar
  16. 16.
    S. J. PARK, M. K. SEO, T. J. MA and D. R. LEE, J. Colloid Inter. Sci. 252 (2002) 249.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Y. Z. Wan
    • 1
    Email author
  • Y. L. Wang
    • 1
  • Y. Huang
    • 1
  • H. L. Luo
    • 1
  • G. C. Chen
    • 2
  • C. D. Yuan
    • 3
  1. 1.School of Materials Science and EngineeringTianjin UniversityTianjinPeople’s Republic of China
  2. 2.Aerospace Research Institute of Materials and Processing TechnologyBeijingPeople’s Republic of China
  3. 3.School of Chemical EngineeringTianjin UniversityTianjinPeople’s Republic of China

Personalised recommendations