Morphological, mechanical and thermal properties of nylon 6/ABS blends using glycidyl methacrylate-methyl methacrylate copolymers
- 149 Downloads
- 7 Citations
Abstract
Nylon6 is an attractive polymer for engineering applications because it has reactive functionality through amine and carboxyl end groups that are capable of reacting. For this reason, it has been used a lot in polymeric blends. Blends of nylon6/ABS (acrylonitrile-butadiene-styrene) were produced using glycidyl methacrylate-methyl methacrylate (GMA-MMA) copolymers as compatibilizer. The binary blends were immiscible and exhibited poor mechanical properties that stemmed from the unfavorable interactions among their molecular segments. This produced an unstable coarse phase morphology and weak interfaces between the phases in the solid state. The presence of the copolymer in the blends clearly led to a more efficient dispersion of the ABS phase and consequently optimized Izod impact properties. However, the compatibilized blend showed poor toughness at room temperature and failed in a brittle manner at subambient temperatures.
Keywords
Polymeric Blend Glycidyl Phase Morphology Poor Mechanical Property Weak InterfacePreview
Unable to display preview. Download preview PDF.
References
- 1.E. M. ARAÚJO, PhD thesis, Universidade Federal de São Carlos, São Carlos, Brazil, (2001).Google Scholar
- 2.V. J. TRIACCA, S. ZIAEE, J. W. BARLOW, H. KESKKULA and D. R. PAUL, Polymer 32 (1991) 1401.CrossRefGoogle Scholar
- 3.Y. AOKI and M. WATANABE, Polym. Eng. Sci. 32 (1992) 878.CrossRefGoogle Scholar
- 4.R. A. KUDVA, H. KESKKULA and D. R. PAUL, Polymer 39 (1998) 2447.CrossRefGoogle Scholar
- 5.B. MAJUMDAR, H. KESKKULA and D. R. PAUL, ibid. 35 (1994) 3164.CrossRefGoogle Scholar
- 6.Idem., Polym. Prepr. 35 (1994) 850.Google Scholar
- 7.Idem., J. Polym. Sci.: Part B: Polymer Phys. 32 (1994) 2127.Google Scholar
- 8.E. HAGE JR., W. R. HALE, H. KESKKULA and D. R PAUL, Polymer 38 (1997) 3237.CrossRefGoogle Scholar
- 9.S. P. JANG and D. KIM, Polym. Eng. Sci. 40 (2000) 1635.CrossRefGoogle Scholar
- 10.B. MAJUMDAR. H. KESKKULA and D. R. PAUL, Polymer 35 (1994) 5453.CrossRefGoogle Scholar
- 11.Idem., ibid. 35 (1994) 5468.Google Scholar
- 12.A. MISRA, G. SAWHNEY and R. A. KUMAR, J. Appl. Polym. Sci. 50 (1993) 1179.CrossRefGoogle Scholar
- 13.R. A. KUDVA, H. KESKKULA and D. R. PAUL, Polymer 40 (1999) 6003.CrossRefGoogle Scholar
- 14.E. M. ARAÚJO, E. HAGE JR. and A. J. F. CARVALHO, J. Mater. Sci. 38 (2003) 3515.CrossRefGoogle Scholar
- 15.Idem., ibid. 39 (2004) 1173.Google Scholar
- 16.W. R. HALE, H. KESKKULA and D. R. PAUL, Polymer 40 (1999) 4237.CrossRefGoogle Scholar
- 17.S. H. GOH and S. Y. LEE, J. Appl. Polym. Sci. 41 (1990) 1391.CrossRefGoogle Scholar
- 18.J. H. KIM, H. KESKKULA and D. R. PAUL, ibid. 40 (1990) 183.CrossRefGoogle Scholar
- 19.Y. HUANG, Y. LIU and C. ZHAO, ibid. 69 (1998) 1505.CrossRefGoogle Scholar
- 20.J. BRANDRUP and E. H. IMMERGUT, “Polymer Handbook” 2nd ed. (John Wiley & Sons, New York, 1989).Google Scholar
- 21.Y. P. KHANNA, Macromolecules 25 (1992) 3298.CrossRefGoogle Scholar
- 22.B. C. BONSE, PhD thesis, Universidade Federal de São Carlos, São Carlos, Brazil, 1999.Google Scholar