Journal of Materials Science

, Volume 40, Issue 16, pp 4231–4238 | Cite as

Metal injection molding of shape memory alloys using prealloyed NiTi powders

  • E. Schöller
  • L. Krone
  • M. Bram
  • H. P. Buchkremer
  • D. Ståaver


Metal injection molding (MIM) was applied for the production of shape memory parts using prealloyed NiTi powders with different Ni contents as starting materials. The MIM process allows the production of near-net-shape components without the occurrence of rapid tool wear as found in the case of conventional machining operations. With optimized manufacturing conditions, including feedstock preparation, injection parameters and sintering conditions, densities of more than 98% of the theoretical value could be achieved. Determination of the phase transformation behavior, as a basic requirement for the shape memory effect, was done by differential scanning calorimetry (DSC). In a first approach, tensile tests in the austenitic state showed pseudoelastic behavior. An elongation at failure of 3.8% was found. For martensite, up to 5% was obtained. Reasons for the lower strain compared to melted NiTi alloys are discussed. For martensitic samples the one-way shape memory effect (1WE) was demonstrated.


Martensite Differential Scanning Calorimetry Tool Wear Shape Memory Shape Memory Alloy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Hornbogen, Metall 41 (1987) 488.Google Scholar
  2. 2.
    H. Funakubo, in “Shape memory alloys”, (Gordon and Breach Science Publishers, New York, 1987) p. 200.Google Scholar
  3. 3.
    J. van Humbeeck, R. Stalmans and P. A. Besselink in “Metals as Biomaterials”, edited by J. A. Helsen, H. J. Breme, (John Wiley & Sons, Chichester, 1998) p. 73.Google Scholar
  4. 4.
    L. Bataillad, J. -E. Didaux and R. Gotthardt, Phil. Mag. A 78 (1998) 327.CrossRefGoogle Scholar
  5. 5.
    J. Khalil-Allafi, X. Ren and G. Eggeler, Acta Mater. 50 (2002) 793.CrossRefGoogle Scholar
  6. 6.
    W. Tang, B. Sundman, R. Sandström and C. Qui, ibid. 47 (1999) 3457.CrossRefGoogle Scholar
  7. 7.
    A. Ishida, M. Sato, A. Takei, K. Nomura and S. Miyazaki, Metall. Mater. Trans. 27A (1996) 3753.Google Scholar
  8. 8.
    K. Gall, K. Juntunen, H. J. Maier, H. Sehitoglu and Y. I. Chumlyakof, Acta Mater. 49 (2001) 3205.CrossRefGoogle Scholar
  9. 9.
    Y. Shugo, S. Hanada and T. Honma, Bull. Res. Inst. Min. Dress. Metall. Tohuku Univ. 41 (1985) 35.Google Scholar
  10. 10.
    T. Honma, in “Shape memory alloys”, edited by H. Funakubo, (Gordon and Breach Science Publishers, New York, 1987) p. 61.Google Scholar
  11. 11.
    P. Olier, F. Barcelo, J. L. Bechade, J. C. Brachet, E. Lefevre and G. Guenin, J. Phys. IV France 7 (1997) C5-143.Google Scholar
  12. 12.
    S. K. Wu, H. C. Lin and C. C. Chen, Mat. Letters 40 (1999) 27.CrossRefGoogle Scholar
  13. 13.
    H. Kato, T. Koyari, M. Tokizane and S. Miura, Acta metall. Mater. 42 (1994) 1351.CrossRefGoogle Scholar
  14. 14.
    M. D. McNeese, D. C. Lagoudas and T. C. Pollock, Mater. Sci. Eng. A280 (2002) 334.Google Scholar
  15. 15.
    M. Bram, A. Ahmand-Khanlou, A. Heckmann, B. Fuchs, H. P. Buchkremer and D. Stöver, Mater. Sci. Eng. A337 (2002) 254.Google Scholar
  16. 16.
    R. M. German, Powder Injection Molding, Metal Powder Industries Federation, Princeton, (1990).Google Scholar
  17. 17.
    J. W. Newkirk, J. A. Sago and G. M. Brasel, in Processing and Fabrication of Advanced Materials VII, edited by T. S. Srivatsan and K. A. Khor, The Minerals, Metals and Materials Society, Warrendale, (1998) 213.Google Scholar
  18. 18.
    H. Kyogoku and S. Komatsu, J. Jap. Soc. Powder and Powder Metallurgy 46 (1999) 1103.Google Scholar
  19. 19.
    B. Y. Li, L. J. Rong., Y. Y. Li and V. E. Gjunter, Acta Mater. 48 (2000) 3895.CrossRefGoogle Scholar
  20. 20.
    S. M. Green, D. M. Grant and N. R. Kelly, Powder Metall. 40 (1997) 43.Google Scholar
  21. 21.
    C. M. Chang, S. Trigwell and T. Duerig, Surf. Interf. Anal. 15 (1990) 349.CrossRefGoogle Scholar
  22. 22.
    C. L. Chu, S. K. Wu and Y. C. Yen, Mater. Sci. Eng. A 216 (1996) 193.CrossRefGoogle Scholar
  23. 23.
    W. Xiaoxiang, Trans. Nonferrous Met. Soc. China 8 (1998) 455.Google Scholar
  24. 24.
    D. Treppmann, Thermomechanische Behandlung von NiTi, Fortschrittsberichte VDI, VDI Verlag Dortmund (1997).Google Scholar
  25. 25.
    X. Ren, N. Miura, J. Zhang, K. Otsuka, K. Tanaka, M. Koiwa, T. Suzuki, Y. I. Chumlyakov and M. Asai, Mater. Sci. Eng. A 312 (2001) 196.CrossRefGoogle Scholar
  26. 26.
    J. Khalil-Allafi, A. Dlouhy and G. Eggeler, Acta Mater. 50 (2002) 4255.CrossRefGoogle Scholar
  27. 27.
    E. Schüller, M. Bram, O. A. Hamed, D. Sebold, H. P. Buchkremer and D. Stöver, to be published, Adv. Eng. Mat.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • E. Schöller
    • 1
  • L. Krone
    • 1
  • M. Bram
    • 1
  • H. P. Buchkremer
    • 1
  • D. Ståaver
    • 1
  1. 1.Forschungszentrum Juelich, IWV1JuelichGermany

Personalised recommendations