Advertisement

Journal of Materials Science

, Volume 40, Issue 15, pp 3981–3985 | Cite as

Biodegradable aliphatic polyester-poly (epichlorohydrin) blend/organoclay nanocomposites; synthesis and rheological characterization

  • Chung H. Lee
  • Hee B. Kim
  • Sung T. Lim
  • Hyoung Jin Choi
  • Myung S. Jhon
Article

Abstract

Polymer/organoclay nanocomposite systems were prepared from biodegradable aliphatic polyester (BAP)-poly(epichlorohydrin) (PECH) blends via the solvent casting method. From X-ray diffraction analysis, it was confirmed that the increased interlayer distance of the clay was solely affected by the BAP, implying that the BAP has better affinity to clay than PECH in a competitive intercalation mechanism. To clarify the sole effect of clay on polymer blend nanocomposite systems, we fixed the clay content at 3 wt%. The mechanical properties and rheological characteristics in steady and oscillatory shear modes of BAP-PECH/clay nanocomposites were investigated and compared with those of BAP-PECH blends without clay.

Keywords

Clay Diffraction Analysis Clay Content Casting Method Epichlorohydrin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. GALGALI, C. RAMESH and A. LELE, Macromolecules 34 (2001) 852.Google Scholar
  2. 2.
    H. J. CHOI, S. G. KIM, Y. H. HYUN and M. S. JHON, Macromol. Rapid Commun. 22 (2001) 320.Google Scholar
  3. 3.
    Y. KOJIMA, A. USUKI, A. OKADA, T. KURAUCHI and O. KAMIGATO, J. Mater. Res. 8 (1993) 1174.Google Scholar
  4. 4.
    M. OKAMOTO, J. Ind. Eng. Chem. 10 (2004) 1156.Google Scholar
  5. 5.
    R. A. VAIA, K. D. JANDT, E. J. KRAMER and E. P. GIANNELIS, Macromolecules 28 (1995) 8080.Google Scholar
  6. 6.
    S. T. LIM, H. J. CHOI and M. S. JHON, J. Ind. Eng. Chem. 9 (2003) 51.Google Scholar
  7. 7.
    R. A. VAIA and E. P. GIANNELIS, Macromolecules 30 (1997) 7990.Google Scholar
  8. 8.
    G. S. SUR, S. G. LYU and J. H. CHANG, J. Ind. Eng. Chem. 9 (2003) 58.Google Scholar
  9. 9.
    S. K. LIM, J. W. KIM, I. CHIN, Y. K. KWON and H. J. CHOI, Chem. Mater. 14 (2002) 1989.Google Scholar
  10. 10.
    J. KIM, J. H. KIM, T. K. SHIN, H. J. CHOI and M. S. JHON, Eur. Polym. J. 37 (2001) 2131.Google Scholar
  11. 11.
    T. K. SHIN, J. KIM, H. J. CHOI and M. S. JHON, Polymer 77 (2000) 1348.Google Scholar
  12. 12.
    J. KIM, T. K. SHIN, H. J. CHOI and M. S. JHON, ibid. 40 (1999) 6873.Google Scholar
  13. 13.
    M. A. PAUL, M. ALEXANDRE, P. DEGÉE, C. HENRIST, A. RULMONT and P. DUBOIS, ibid. 44 (2003) 443.Google Scholar
  14. 14.
    G. X. CHEN, G. J. HAO, T. Y. GUO, M. D. SONG and B. H. ZHANG, J. Mater. Sci. Lett. 21 (2002) 1587.Google Scholar
  15. 15.
    S. R. LEE, H. M. PARK, H. LIM, T. KANG, X. LI, W. J. CHO and C. S. HA, Polymer 43 (2002) 2495.Google Scholar
  16. 16.
    S. T. LIM, Y. H. HYUN, C. H. LEE and H. J. CHOI, J. Mater. Sci. Lett. 22 (2003) 299.Google Scholar
  17. 17.
    C. H. LEE, S. T. LIM, Y. H. HYUN, H. J. CHOI and M. S. JHON, J. Mater. Sci. Lett. 22 (2003) 53.Google Scholar
  18. 18.
    S. H. PARK and G. SPOSITO, Phys. Rev. Lett. 89 (2002) 085501.PubMedGoogle Scholar
  19. 19.
    R. KRISHNAMOORTI and E. P. GIANNELIS, Macromolecules 30 (1997) 4097.Google Scholar
  20. 20.
    Y. H. HYUN, S. T. LIM, H. J. CHOI and M. S. JHON, ibid. 34 (2001) 8084.CrossRefGoogle Scholar
  21. 21.
    Y. T. LIM and O. O. PARK, Rheol. Acta 40 (2001) 220.Google Scholar
  22. 22.
    B. HOFFMANN, J. KRESSLER, G. STÖPPELMANN, C. FRIENDRICH and G. M. KIM, Colloid Polym. Sci. 278 (2000) 629.Google Scholar
  23. 23.
    D. GERSAPPE, Phys. Rev. Lett. 89 (2002) 058301.PubMedGoogle Scholar
  24. 24.
    S. SALANIWAL, S. K. KUMAR and J. E. DOUGLAS, Phys. Rev. Lett. 89 (2002) 258301.PubMedGoogle Scholar
  25. 25.
    M. J. SOLOMON, A. S. ALMUSALLAM, K. F. SEEFELDT, A. SOMWANGTHANAROJ and P. VARADAN, Macromolecules 34 (2001) 1864.Google Scholar
  26. 26.
    J. REN, A. S. SILVA and R. KRISHNAMOORTI, ibid. 33 (2000) 3739.Google Scholar
  27. 27.
    P. J. CARREAU, D. C. R. DE KEE and R. P. CHHABRA, in “Rheology of Polymeric Systems” (Hanser Publishers, New York, 1997).Google Scholar
  28. 28.
    S. T. LIM, Y. H. HYUN, H. J. CHOI and M. S. JHON, Chem. Mater. 14 (2002) 1839.Google Scholar
  29. 29.
    W. P. COX and W. H. MERZ, J. Polym. Sci. 28 (1958) 619.Google Scholar
  30. 30.
    D. G. BAIRD and D. I. COLLIAS, in “Polymer Processing Principles and Design” (Jhon Wiley & Sons, New York, 1998).Google Scholar
  31. 31.
    T. AGAG, T. KOGA and T. TAKEICHI, Polymer 42 (2001) 3399.Google Scholar
  32. 32.
    B. H. KIM, S. H. HONG, J. JOO, I. W. PARK, A. J. EPSTEIN, J. W. KIM and H. J. CHOI, J. Appl. Phys. 95 (2004) 2697.Google Scholar
  33. 33.
    S. K. LIM, S. T. LIM, H. B. KIM, I. CHIN and H. J. CHOI, J. Macromol. Sci.: Phys. B42 (2003) 1197.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Chung H. Lee
    • 1
  • Hee B. Kim
    • 1
  • Sung T. Lim
    • 1
  • Hyoung Jin Choi
    • 1
  • Myung S. Jhon
    • 2
  1. 1.Department of Polymer Science and EngineeringInha UniversityIncheonKorea
  2. 2.Department of Chemical EngineeringCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations