Advertisement

Journal of Materials Science

, Volume 40, Issue 12, pp 3191–3198 | Cite as

Diffusion of carbon and titanium in γ -iron in a magnetic field and a magnetic field gradient

  • S. Nakamichi
  • S. Tsurekawa
  • Y. Morizono
  • T. Watanabe
  • M. Nishida
  • A. Chiba
Article

Abstract

The diffusion coefficients of carbon and titanium in γ -iron were measured in a 6T magnetic field and in magnetic field gradients ranging from 30 to 45 T/m. We have found that the diffusion of carbon in γ -iron is retarded by application of a 6T magnetic field. In contrast with carbon diffusion, no noticeable effect of a magnetic field on the diffusivity of titanium in γ -iron is observed. On the other hand, the diffusion of carbon in γ -iron can be enhanced in a magnetic field gradient when carbon atoms move towards the direction with a higher magnetic field strength. The higher the magnetic field gradient strength becomes, the more the carbon diffusion is enhanced. Nevertheless, a magnetic field gradient causes a decrease in diffusivity of carbon in γ -iron when the opposite magnetic field gradient is applied.

Keywords

Iron Polymer Magnetic Field Titanium Diffusion Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. SMOLUCHOWSKI and R. W. TURNER, J. Appl. Phys 20 (1949) 745.CrossRefGoogle Scholar
  2. 2.
    H. O. MARTIKAINEN and V. K. LINDROOS, Scand. J. Metall 10 (1981) 3.Google Scholar
  3. 3.
    T. WATANABE, Y. SUZUKI, S. TANII and H. OIKAWA, Phil. Mag. Lett 62 (1990) 9.Google Scholar
  4. 4.
    N. MASAHASHI, M. MATSUO and K. WATANABE, J. Mater. Res 13 (1998) 457.Google Scholar
  5. 5.
    A. D. SHEIKH-ALI, D. A. MOLODOV and H. GARMESTANI, Scripta Mater 46 (2002) 857.CrossRefGoogle Scholar
  6. 6.
    T. WATANABE, in Proc. The Fourth Intern. Conf. on Recrystallization and Related Phenomena (The Japan Inst. Metals, 1999) p. 99.Google Scholar
  7. 7.
    K. HARADA, S. TSUREKAWA, T. WATANABE and G. PALUMBO, Scripta Mater 49 (2003) 367.CrossRefGoogle Scholar
  8. 8.
    C. M. B. BACALTCHUK, G. A. CASTELLO-BRANCO, M. EBRAHIMI, H. GARMESTANI and A. D. ROLLETT, ibid 48 (2003) 1343.CrossRefGoogle Scholar
  9. 9.
    D. A. MOLODOV, G. GOTTSTEIN, F. HERINGHAUS and L. S. SHVINDLERMAN, ibid 37 (1997) 1207.CrossRefGoogle Scholar
  10. 10.
    Idem, Acta Mater 46 (1998) 5627.CrossRefGoogle Scholar
  11. 11.
    A. D. SHEIKH-ALI, D. A. MOLODOV and H. GARMESTANI, Scripta Mater 48 (2003) 483.CrossRefGoogle Scholar
  12. 12.
    M. SHIMOTOMAI and K. MARUTA, ibid 42 (2000) 499.CrossRefGoogle Scholar
  13. 13.
    H. PENDER and R. L. JONES, Phys. Rev 1 (1913) 259.CrossRefGoogle Scholar
  14. 14.
    J.-K. CHOI, H. OHTSUKA, Y. XU and W.-Y. CHOO, Scripta Mater 43 (2000) 221.CrossRefGoogle Scholar
  15. 15.
    W. LIU, D. R. OU, H. H. ZHOU, G. Y. TANG and F. WU, J. Mater. Res 16 (2001) 2280.Google Scholar
  16. 16.
    G. M. LUDTKA, R. A. JARAMILLO, R. A. KISNER, D. M. NICHOLSON, J. B. WILGEN, G. MACKIEWICZ-LUDTKA and P. N. KALU, Scripta Mater 51 (2004) 171.CrossRefGoogle Scholar
  17. 17.
    G. SAUTHOFF and W. PITSCH, Phil. Mag. B 56 (1987) 471.Google Scholar
  18. 18.
    W. V. YOUDELIS, D. R. COLTON and J. CAHOON, Can. J. Phys 42 (1964) 2217.Google Scholar
  19. 19.
    H. NAKAJIMA, S. MAEKAWA, Y. AOKI and M. KOIWA, Trans. Jpn. Inst. Met 26 (1985) 1.Google Scholar
  20. 20.
    A. V. POKOEV, D. I. STEPANOV, I. S. TROFIMOV and V. F. MAZANKO, Phys. Stat. Sol. (a) 137 (1993) K1.Google Scholar
  21. 21.
    A. V. POKOEV and D. I. STEPANOV, Defect Diffusion Forum 143–147 (1997) 419.Google Scholar
  22. 22.
    R. P. SMITH, Trans. AIME 224 (1962) 105.Google Scholar
  23. 23.
    F. C. WAGNER, E. J. BUCUR and M. A. STEINBERG, Trans. ASM 48 (1956) 742.Google Scholar
  24. 24.
    M. I. DE BARROS, D. RATS, L. VANDENBULCKE and G. GARGES, Diamond. Related. Mater 8 (1999) 1022.CrossRefGoogle Scholar
  25. 25.
    R. P. SMITH, Trans. AIME 230 (1964) 476.Google Scholar
  26. 26.
    S. TSUREKAWA, K. HARADA, T. SASAKI, T. MATSUZAKI and T. WATANABE, Mater. Trans. JIM 41 (2000) 991.Google Scholar
  27. 27.
    S. H. MOLL and R. E. OGILVIE, Trans. TMS-AIME 215 (1959) 613.Google Scholar
  28. 28.
    Y. IIJIMA, K. KIMURA and K. HIRANO, Acta Metall 36 (1988) 2811.CrossRefGoogle Scholar
  29. 29.
    E. BUDKE, CH. HERZIG and H. WEVER, Phys. Stat. Sol 127 (1991) 87.Google Scholar
  30. 30.
    W. KÖSTER, Z. Metallkde 39 (1948) 1.Google Scholar
  31. 31.
    A. V. MIRONOV, A. V. POKOEV, D. I. STEPANOV and I. S. TROFIMOV, Defect and Diffusion Forum 1940–199 (2001) 67.Google Scholar
  32. 32.
    K. HONDA, “Magnetic Properties of Matter” (Syokwabo and Company, Tokyo, Japan, 1928) p. 84.Google Scholar
  33. 33.
    C. W. CHEN, “Magnetism an Metallurgy of Soft Magnetic Materials” (Dover Publications, New York, 1986).Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • S. Nakamichi
    • 1
  • S. Tsurekawa
    • 1
  • Y. Morizono
    • 2
  • T. Watanabe
    • 3
  • M. Nishida
    • 4
  • A. Chiba
    • 4
  1. 1.Lab. Materials Design and Interface Engineering, Department of Nanomechanics, Graduate School of EngineeringTohoku UniversityJapan
  2. 2.Department of Mechanical Engineering and Materials Science, Faculty of EngineeringKumamoto UniversityJapan
  3. 3.Lab. Materials Design and Interface Engineering, Department of Nanomechanics, Graduate School of EngineeringTohoku UniversityJapan
  4. 4.Department of Mechanical Engineering and Materials Science, Faculty of EngineeringKumamoto UniversityJapan

Personalised recommendations