Advertisement

Journal of Materials Science

, Volume 40, Issue 12, pp 3121–3127 | Cite as

A stereoscopic method for dihedral angle measurement

  • L. Felberbaum
  • A. Rossoll
  • A. Mortensen
Article

Abstract

A new method is presented for the measurement of equilibrium dihedral angles in intergranular inclusions, and illustrated with pure copper containing 1 wt% lead. The method is based on the selective dissolution of inclusions visible along a polished metallographic section. Scanning electron microscopy stereo image pairs are then taken and processed so as to enable a three-dimensional digital reconstruction of the inclusion/matrix interface along each inclusion. Spherical caps describing the Cu/Pb interface over non-facetted orientations are then fitted to the measured digital inclusion envelope reconstructions. Knowing the center and radius of these spheres, the true dihedral angle of each specific inclusion can then be deduced with good precision.

It is found that the true dihedral angle in the Cu/Pb alloy is not a unique function of temperature, reflecting the (known) anisotropy of high-angle grain boundary energy in copper.

Keywords

Dihedral Angle Stereo Image Microscopy Stereo Selective Dissolution Metallographic Section 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. H. P. LUPIS, in “Chemical Thermodynamics of Materials” (North-Holland, Elsevier, New York, Amsterdam, 1983) p. 375.Google Scholar
  2. 2.
    N. EUSTATHOPOULOS, Intern. Met. Rev 28 (1983) 189.Google Scholar
  3. 3.
    T. MORI, H. MIURA, T. TOKITA, J. HAJI and M. KATO, Philosoph. Mag. Lett. 58 (1988) 11.Google Scholar
  4. 4.
    C. S. SMITH, Trans. Amer. Inst. Mining Metall. Eng 175 (1948) 15.Google Scholar
  5. 5.
    D. HARKER and E. R. PARKER, Trans. Amer. Soc. Met 34 (1945) 156.Google Scholar
  6. 6.
    O. K. RIEGGER and L. H. VAN VLACK, Trans. Amer. Inst. Mining Metall. Engng 218 (1960) 933.Google Scholar
  7. 7.
    C. A. STICKELS and E. E. HUCKE, Trans. Metall. Soc. AIME 230 (1964) 795.Google Scholar
  8. 8.
    S. R. JUREWICZ and A. J. G. JUREWICZ, J. Geophys. Res.-Solid Earth Plan 91 (1986) 9277.Google Scholar
  9. 9.
    M. A. FORTES and A. C. FERRO, Metall. Trans. A-Phys. Metall. Mater. Sci 19 (1988) 1147.Google Scholar
  10. 10.
    R. T. DE HOFF, Metallography 19 (1986) 209.CrossRefGoogle Scholar
  11. 11.
    W. W. MULLINS, Trans. Metall. Soc. AIME 218 (1960) 354.Google Scholar
  12. 12.
    E. RABKIN and L. KLINGER, Adv. Engng. Mater 3 (2001) 277.CrossRefGoogle Scholar
  13. 13.
    H. GABRISCH, U. DAHMEN and E. JOHNSON, Microsc. Res. Techn 42 (1998) 241.Google Scholar
  14. 14.
    U. DAHMEN, S. Q. XIAO, S. PACIORNIK, E. JOHNSON and A. JOHANSEN, Phys. Rev. Lett 78 (1997) 471.CrossRefGoogle Scholar
  15. 15.
    E. JOHNSON, A. JOHANSEN, U. DAHMEN, S. CHEN and T. FUJII, Mater. Sci. Engng. A 304–306 (2001) 187.CrossRefGoogle Scholar
  16. 16.
    H. GABRISCH, L. KJELDGAARD, E. JOHNSON and U. DAHMEN, Acta Materialia 49 (2001) 4259.CrossRefGoogle Scholar
  17. 17.
    K. K. IKEUYE and C. S. SMITH, Met. Trans 185 (1949) 762.Google Scholar
  18. 18.
    W. M. ROBERTSON, Trans. Metall. Soc. AIME 233 (1965) 1232.Google Scholar
  19. 19.
    N. EUSTATHOPOULOS, L. COUDURIER, J. C. JOUD and P. J. DESRE, Journal de chimie physique 71 (1974) 1465.Google Scholar
  20. 20.
    L. RATKE and H. J. VOGEL, Acta Materialia 39 (1991) 915.Google Scholar
  21. 21.
    I. APYKHTINA, B. BOKSTEIN, A. KHUSNUTDINOVA, A. PETELINE and S. RAKOV, Defect and Diffusion Forum 194–199 (2001) 1331.Google Scholar
  22. 22.
    L. FELBERBAUM, “Microstructure and Embrittlement of Leaded Copper Alloys, ” Ph.D. Thesis #3217, EPFL, Lausanne, Switzerland, 2005.Google Scholar
  23. 23.
    D. R. POIRIER and G. H. GEIGER, “Transport Phenomena in Materials Processing.” (TMS, Warrendale, PA, 1994) p. 267.Google Scholar
  24. 24.
    MeX software, Alicona Imaging GmbH, Graz (2004), http://www.alicona.com.
  25. 25.
    K. I. MOORE, D. L. ZHANG and B. CANTOR, Acta Metallurgica et Materialia 38 (1990) 1327.CrossRefGoogle Scholar
  26. 26.
    W. T. KIM and B. CANTOR, ibid 40 (1992) 3339.CrossRefGoogle Scholar
  27. 27.
    R. GOSWAMI and K. CHATTOPADHYAY, ibid 43 (1995) 2837.CrossRefGoogle Scholar
  28. 28.
    R. GOSWAMI, K. CHATTOPADHYAY and P. L. RYDER, Acta Materialia 46 (1998) 4257.CrossRefGoogle Scholar
  29. 29.
    M. F. ASHBY and L. JOHNSON, Philosoph. Mag 20 (1969) 1009.Google Scholar
  30. 30.
    J. W. MATTHEWS, in “Dislocations in Solids, ” edited by F. R. N. Nabarro (North-Holland Publ., New York, 1979) p. 461.Google Scholar
  31. 31.
    D. R. CLARKE and M. L. GEE, in “Materials Interfaces Atomic-Level Structure and Properties, ” edited by D. Wolf and S. Yip (Chapman & Hall, London, 1992) p. 255.Google Scholar
  32. 32.
    G. HASSON, J.-Y. BOOS, I. HERBEUVAL, M. BISCONDI and C. GOUX, Surf. Sci 31 (1972) 115.CrossRefGoogle Scholar
  33. 33.
    D. WOLF, J. Mater. Res 5 (1990) 1708.Google Scholar
  34. 34.
    P. PROTSENKO, Y. KUCHERINENKO, F. ROBAUT, V. TRASKINE and N. EUSTATHOPOULOS, Def. Diff. Forum 216/217 (2003) 225.Google Scholar
  35. 35.
    D. CHATAIN, C. VAHLAS and N. EUSTATHOPOULOS, Acta Metall 32 (1984) 227.CrossRefGoogle Scholar
  36. 36.
    R. B. WATERHOUSE and D. GRUBB, J. Inst. Met 91 (1963) 216.Google Scholar
  37. 37.
    C. A. STICKELS, J. Inst. Met 91 (1963) 422.Google Scholar
  38. 38.
    G. RAO, D. B. ZHANG and P. WYNBLATT, Acta Metallurgica et Materialia 41 (1993) 3331.CrossRefGoogle Scholar
  39. 39.
    G. PREVOT, C. COHEN, J. M. GUIGNER and D. SCHMAUS, Phys. Rev. B 61 (2000) 10393.Google Scholar
  40. 40.
    J. MOON, J. LOWEKAMP, P. WYNBLATT, G. STEPHEN and R. M. SUTER, Surf. Sci 488 (2001) 73.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Laboratory for Mechanical Metallurgy, Institute of MaterialsSwiss Federal Institute of Technology in Lausanne (EPFL)LausanneSwitzerland

Personalised recommendations