Advertisement

Journal of Materials Science

, Volume 40, Issue 12, pp 3047–3050 | Cite as

O2 oxidation reaction at the Si(100)-SiO2 interface: A first-principles investigation

  • A. Bongiorno
  • A. Pasquarello
Article

Abstract

We investigated the oxidation reaction of the O2 molecule at the Si(100)-SiO2 interface by using a constrained ab initio molecular dynamics approach. To represent the Si(100)-SiO2 interface, we adopted several model interfaces whose structural properties are consistent with atomic-scale information obtained from a variety of experimental probes. We addressed the oxidation reaction by sampling different reaction pathways of the O2 molecule at the interface. The reaction proceeds sequentially through the incorporation of the O2 molecule in a Si–Si bond and the dissociation of the resulting network O2-species. The oxidation reaction occurs nearly spontaneously and is exothermic, regardless of the spin state of the O2 molecule. Our study suggests a picture of the silicon oxidation process entirely based on diffusive processes.

Keywords

Oxidation Polymer Silicon SiO2 Molecular Dynamic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. WANG, P. ROMAN, E. KAMIENIECKI and J. RUZYLLO, Electrochem. Solid-State Lett 6 (2003) G63.CrossRefGoogle Scholar
  2. 2.
    Y. J. CHABAL (ed.) “Fundamental Aspects of Silicon Oxidation” (Springer, Berlin, 2001).Google Scholar
  3. 3.
    E. P. GUSEV, H. C. LU, T. GUSTAFSSON and E. GARFUNKEL, Phys. Rev. B 52 (1995) 1759.CrossRefGoogle Scholar
  4. 4.
    B. E. DEAL and A. S. GROVE, J. Appl. Phys 36 (1965) 3770.CrossRefGoogle Scholar
  5. 5.
    E. ROSENCHER, A. STRABONI, S. RIGO and G. AMSEL, Appl. Phys. Lett 34 (1979) 254.CrossRefGoogle Scholar
  6. 6.
    A. BONGIORNO and A. PASQUARELLO, Phys. Rev. Lett 88 (2002) 125901.CrossRefPubMedGoogle Scholar
  7. 7.
    N. F. MOTT, S. RIGO, F. ROCHET and A. M. STONEHAM, Philos. Mag. B 60 (1989) 189.Google Scholar
  8. 8.
    L. VERDI and A. MIOTELLO, Phys. Rev. B 51 (1995) 5469; S. DIMITRIJEV and H. B. HARRISON, J. Appl. Phys 80 (1996) 2467; A. STOCKHAUSEN, T. U. KAMPEN and W. MÖNCH, Appl. Surf. Sci 56 (1992) 795; J. WESTERMANN, H. NIENHAUS and W. MÖNCH, Surf. Sci 311 (1994) 101; K.-Y. PENG, L.-C. WANG and J. C. SLATTERY, J. Vac. Sci. Technol B 14 (1996) 3316; D. R. WOLTERS and A. T. A. ZENGERS VAN DUIJNHOVEN, Microelect. Reliab 38 (1998) 259; R. M. C. DE ALMEIDA, S. GONÇALVES, I. J. R. BAUMVOL and F. C. STEDILE, Phys. Rev. B 61 (2000) 12992.Google Scholar
  9. 9.
    R. H. DOREMUS and A. SZEWCZYK, J. Mater. Sci 22 (1987) 2887; R. H. DOREMUS, J. Appl. Phys 66 4441 (1989).Google Scholar
  10. 10.
    A. PASQUARELLO, M. S. HYBERTSEN and R. CAR, Nature 396 (1998) 58; in Ref. [2]p. 107.Google Scholar
  11. 11.
    W. ORELLANA, A. J. R. DA SILVA and A. FAZZIO, Phys. Rev. Lett 90 (2003) 16103.CrossRefGoogle Scholar
  12. 12.
    B. B. STEFANOV and K. RAGHAVACHARI, Surf. Sci 389 (1997) L1159; K. KATO, T. UDA and K. TERAKURA, Phys. Rev. Lett 80 (1998) 2000; Y. TU and J. TERSOFF, ibid 89 (2002) 086102; T. AKIYAMA and H. KAGESHIMA, Appl. Surf. Sci 216 (2003) 270; T. YAMASAKI, K. KATO and T. UDA, Phys. Rev. Lett 91 (2003) 146102.Google Scholar
  13. 13.
    A. PASQUARELLO, K. LAASONEN, R. CAR, C. LEE and D. VANDERBILT, ibid 69 (1992) 1982; K. LAASONEN, A. PASQUARELLO, R. CAR, C. LEE and D. VANDERBILT, Phys. Rev. B 47 (1993) 10142.Google Scholar
  14. 14.
    A. BONGIORNO and A. PASQUARELLO, Appl. Phys. Lett 83 (2003) 1417.CrossRefGoogle Scholar
  15. 15.
    A. BONGIORNO, A. PASQUARELLO, M. S. HYBERTSEN and L. C. FELDMAN, Phys. Rev. Lett 90 (2003) 186101.CrossRefPubMedGoogle Scholar
  16. 16.
    J. P. PERDEW and Y. WANG, Phys. Rev. B 46 (1992) 12947.CrossRefGoogle Scholar
  17. 17.
    A. DAL CORSO, A. PASQUARELLO, A. BALDERESCHI and R. CAR, ibid 53 (1996) 1180.CrossRefGoogle Scholar
  18. 18.
    D. VANDERBILT, Phys. Rev. B 41 (1990) 7892.CrossRefGoogle Scholar
  19. 19.
    N. AWAJI et al, Jpn. J. Appl. Phys 35 (1996) L67; S. D. KOSOWSKY et al, Appl. Phys. Lett 70 (1997) 3119.Google Scholar
  20. 20.
    F. ROCHET, CH. PONCEY, G. DUFOUR, H. ROULET, C. GUILLOT and F. SIROTTI, J. of Non-Crystal. Solids 216 (1997) 148; J. H. OH, H. W. YEOM, Y. HAGIMOTO, K. ONO, M. OSHIMA, N. HIRASHITA, M. NYWA and A. TORIUMI, Phys. Rev. B 63 (2001) 205310.Google Scholar
  21. 21.
    R. CAR and M. PARRINELLO, Phys. Rev. Lett 55 (1985) 2471; F. TASSONE, F. MAURI and R. CAR, Phys. Rev. B 50 (1994) 10561.Google Scholar
  22. 22.
    W. ORELLANA, A. J. R. DA SILVA and A. FAZZIO, Phys. Rev. Lett 87 (2001) 155901.CrossRefPubMedGoogle Scholar
  23. 23.
    A. BONGIORNO and A. PASQUARELLO, J. Phys.: Condens. Matter 15 (2003) S1553.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Institut de Théorie des Phénomènes Physiques (ITP)Ecole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
  2. 2.Institut Romand de Recherche Numérique en Physique des Matériaux (IRRMA)LausanneSwitzerland
  3. 3.Georgia Institute of TechnologySchool of PhysicsAtlanta

Personalised recommendations