Journal of Materials Science

, Volume 40, Issue 11, pp 2843–2847 | Cite as

Estimation of reaction conditions for synthesis of nanosized brookite-type titanium dioxide from aqueous TiOCl2 solution

  • Jeong Hoon Lee
  • Yeong Seok Yang


Ti O2 nanoparticles with a mixture of brookite and rutile phases were prepared from aqueous TiOCl2 solution at 80–150°C and pure rutile phase at 200°C. The volume fraction of brookite was gradually increased with increase of HCl concentration in the range of about 4.43 M to 6.28 M. The maximum volume fraction of brookite in the as-prepared TiO2 particles was obtained when oxidation of Ti4+ to TiO2 was completed but it was gradually decreased with increase of reaction time. The reaction time for complete oxidation of Ti4 + to TiO2 was about 15 h at 80°C, about 5 h at 100°C, about 2 h at 120°C, and about 1 h at 150°C, respectively, showing that the kinetics of oxidation is very dependent on the reaction temperature. Brookite phase was not transformed directly to rutile phase but to anatase phase by heat-treatment at about 750°C, which finally converted to rutile phase at 1100°C.


Rutile Anatase Phase Rutile Phase Select Area Diffraction Pattern Brookite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Y. ZHENG, E. SHI, Z. CHEN, W. LI and X. HU, J. Mater. Chem. 11 (2001) 1547.CrossRefGoogle Scholar
  2. 2.
    C. C. WANG and J. Y. YING, Chem. Mater. 11(11) (1999) 3113.CrossRefGoogle Scholar
  3. 3.
    A. POTTIER, C. CHANEAC, E. TRONC, L. MAZEROLLES and J. P. JOLIVET, J. Mater. Chem. 11 (2001) 1116.CrossRefGoogle Scholar
  4. 4.
    J. YANG, S. MEI and J. M. F. FERREIRA, J. Mater. Res. 17(9) (2002).Google Scholar
  5. 5.
    H. KOMINAMI, M. KOHNO and Y. KERA, J. Mater. Chem. 10 (2000) 1151.CrossRefGoogle Scholar
  6. 6.
    Y. ZHENG, E. SHI, S. CHI, W. LI and X. HU, J. Mater. Sci. Lett. (2000) 1445.Google Scholar
  7. 7.
    Y. ZHENG, E. SHI, S. CHEN, W. LI and X. HU, J. Am. Ceram. Soc. 83(10) (2000) 2634.CrossRefGoogle Scholar
  8. 8.
    X. YE, J. SHA, Z. JIAO and L. ZHANG, Nanostructured Mater. 8(7) (1997) 919.CrossRefGoogle Scholar
  9. 9.
    M. KOELSCH, S. CASSAIGNON, J. F. GUILLEMOLES and J. P. JOLVET, Thin Solid Film 403–404 (2002) 312.CrossRefGoogle Scholar
  10. 10.
    Y. HU, H. L. TSAI and C. L. HUANG, J. Euro. Ceram. Soc. 23 (2003) 691.CrossRefGoogle Scholar
  11. 11.
    P. ARNAL, R. J. P. CORRIU, D. LECLERCQ, P. H. MUTIN and A. VIOUX, J. Mater. Chem. 6(12) (1996) 1925.CrossRefGoogle Scholar
  12. 12.
    J. YANG, S. MEI and J. M. FERREIRA, J. Am. Ceram. Soc. 83(6) (2000) 1361.CrossRefGoogle Scholar
  13. 13.
    M. WU, J. LONG, A. HUNG and Y. LUO, Langmuir 15 (1999) 8822.CrossRefGoogle Scholar
  14. 14.
    S. J. KIM, S. D. PARK and Y. H. JEONG, J. Am. Ceram. Soc. 82(4) (1999) 927.CrossRefGoogle Scholar
  15. 15.
    H. D. NAM, B. H. LEE, S. J. KIM, C. H. JUNG, J. H. LEE and S. PARK, Jap. J. Appl. Phys. 37 (1998) 4603.CrossRefADSGoogle Scholar
  16. 16.
    S. D. PARK, Y. H. CHO, W. W. KIM and S. J. KIM, J. Solid State Chem. 146 (1999) 230.CrossRefADSGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Department of Chemical EngineeringWoosuk UniversityWan-juJeon-bukKorea

Personalised recommendations