Journal of Materials Science

, Volume 40, Issue 11, pp 2823–2831 | Cite as

Dynamic mechanical analysis of electron beam irradiated sulphur vulcanized nitrile rubber network—some unique features

  • V. Vijayabaskar
  • A. K. Bhowmick


Mixed crosslinking system with electron beam irradiation as one of the crosslinkers in rubber has been developed for the first time. This paper describes some unique features of dynamic mechanical properties of the electron beam irradiated nitrile rubber vulcanizates at varying levels of sulphur in the network. Dynamic mechanical thermal analysis (DMTA) was performed on these vulcanizates over a range of temperatures (−80°C to +80°C), frequencies (0.032 to 32 Hz) and strains (0.001 to 10%). The results showed that there were significant changes in tan delta peak temperature and storage modulus on irradiation of these vulcanizates. The vulcanizates containing higher amount of sulphur formed intense crosslinked networks and crosslink rearrangements, which were supported by the increase in the storage modulus and shift in tan delta towards higher temperature as compared to their control counterpart. There is also an increase in the peak height due to chain scission and subsequent plasticization. A concept of network distribution using the plots of the storage modulus ratio divided by frequency against inverse of frequency was introduced. This contravening nature was also affirmed with the help of these curves showing broader network distribution for irradiated samples having lower amount of sulphur. This was also supported from the crossover frequency values estimated from the plot of storage and loss modulii against frequencies observed.


Electron Beam Storage Modulus Network Distribution Dynamic Mechanical Thermal Analysis Crosslink Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I. BANIK, T. K. CHAKI, V. K. TIKKU and A. K. BHOWMICK, Angew. Makromol. Chem. 263 (1999) 5.CrossRefGoogle Scholar
  2. 2.
    H. P. BROWN, Rubber Chem. Technol. 36 (1963) 931.Google Scholar
  3. 3.
    N. D. ZAKHAROV and T. A. SHADRICHEVA, Rubber Chem. Technol. 36 (1961) 575.Google Scholar
  4. 4.
    A. K. BHOWMICK and S. K. DE, Rubber Chem. Technol. 53 (1980) 107.Google Scholar
  5. 5.
    N. D. ZAKHAROV and I. N. BEREZKIN, Kauch. Rezina. 20 (1961) 7.Google Scholar
  6. 6.
    R. A. ZINGARO and W. C. COOPER (Selenium, Van Nostrand Reinhold, New York, 1974) P. 728.Google Scholar
  7. 7.
    G. B. ABDULLAEV, T. K. ISMAILOV, S. A. ABASOV, G. G. AKHMEDEV, S. I. MAKHTIEVA, K. R. AKHMEDOV and T. A. PASHAEV, Chem. Abstr. 86 (1977) 19101u.Google Scholar
  8. 8.
    V. P.KVARDASHOV and A. E.KORNEV, Khim. Khim. Technol. 14(11) (1971) 1757.Google Scholar
  9. 9.
    Y. MINORA, S. YAMASHITA, H. OKARNATO, N. MATSUO, M. IRAWA and S. I. KOTTMOTO, Rubber Chem. Technol. 52 (1979) 926.Google Scholar
  10. 10.
    V. VIJAYABASKAR, FRANCIS RENE COSTA and ANIL K. BHOWMICK. Rubber Chem. Technol. 77 (2004) 624.Google Scholar
  11. 11.
    V. VIJAYABASKAR, RAKESH GUPTA, P. P.CHAKRABARTI and ANIL K. BHOWMICK, J. Appl. Polym. Sci. 2004 (Communicated).Google Scholar
  12. 12.
    L. E.NIELSON, “Mechanical Properties of Polymers and Composites” (Marcel Dekker, New York, 1974).Google Scholar
  13. 13.
    N. G. MCCRUM, B. E.READ and G. WILLIAMS, “An elastic and Dielectric Effects in Polymer Solids” (Wiley, London, 1967).Google Scholar
  14. 14.
    J. D.FERRY, “Viscoelastic Properties of Polymers” (Wiley, New York, 1970).Google Scholar
  15. 15.
    V. D. MCGININSE, in “Crosslinking with Radiation Encyclopedia of Polymer Science and Engineering,” edited by J. I.Kroschwitz (John Wiley and Sons 4, 1986) p. 418.Google Scholar
  16. 16.
    T. MURAYAMA, in “Dynamic Mechanical Properties, Encyclopedia of Polymer Science and Engineering,” edited by J. I. Kroschwitz (John Wiley and Sons 5, 1986) p. 299.Google Scholar
  17. 17.
    R. K.TRAEGER and T. G.CASTONGUAY, J. Appl. Polym. Sci. 10 (1996) 491.CrossRefGoogle Scholar
  18. 18.
    T. K.CHAKI, D. ROY, A. B. MAJALI and A. K. BHOWMICK, J. Polym. Eng. 13 (1994) 17.Google Scholar
  19. 19.
    K. P. S. KWEI and T. K. KWEI, J. Appl. Polym. Sci. 12 (1968) 1553.Google Scholar
  20. 20.
    S. K.DATTA, T. K. CHAKI, D. KHASTGIR and A. K.BHOWMICK, Polym. and Polym. Comp. 4 (1996) 419.Google Scholar
  21. 21.
    I. BANIK and A. K.BHOWMICK, J. Appl. Polym. Sci. 69 (1998) 2079.CrossRefGoogle Scholar
  22. 22.
    P. THAVAMANI and A. K.BHOWMICK, J. Mat. Sci. 27 (1992) 32439.CrossRefGoogle Scholar
  23. 23.
    A. CHARLESBY and S. H. PINNER, Proc. Roy. Soc (London) A249 (1959) 367.ADSGoogle Scholar
  24. 24.
    W. H. TUMINELLO, Polym. Eng. Sci. 26 (1986) 1339.CrossRefGoogle Scholar
  25. 25.
    S. WU, Polym. Eng. Sci. 25 (1985) 122.CrossRefGoogle Scholar
  26. 26.
    G. R. ZEICHNER and C. W. MACOSKO, “On-line Viscoelastic Measurements for Polymer Melt Processes” (SPEANTEC Tech.Conf., SanFrancisco, May, 1982).Google Scholar
  27. 27.
    T. MASUDA. K. KITAGAWA. T. LNOUE and S. ONOGI, Macromolecules 3 (1970) 116.CrossRefADSGoogle Scholar
  28. 28.
    W. W. GRAESSLEY, “Viscoelasticity and Flow in Polymer Melts and Concentrated Solutions,” in “Physical Properties of Polymers.” edited by J. E. Mark (ACS, Washington, DC, 1984): Faraday Symp. Chem. Soc. 18 (1983) 7.Google Scholar
  29. 29.
    T. LIU, D. S. SOONG and M. C. WILLIAMS, J. Rheology 27 (1983) 7.MATHCrossRefADSGoogle Scholar
  30. 30.
    R. RAHALKAR and HENRY TANG, Rubber Chem. Technol. 61(5) (1988) 812.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Rubber Technology CentreIndian Institute of TechnologyKharagpurIndia

Personalised recommendations