Journal of Materials Science

, Volume 40, Issue 11, pp 2803–2806 | Cite as

On equilibrium conditions at junctions of anisotropic interfaces



The issue of mechanical equilibrium conditions at junctions of sharp anisotropic interfaces is addressed. The well known Herring conditions are valid for a given junction direction. It is shown that if a system of interface segments joint along a line is allowed to change line direction, some additional relations are applicable. They are derived using the Hoffman–Cahn formalism of capillarity vector. As an example proving significance of the additional relations, criteria for wetting of anisotropic boundaries are considered. If the direction of the triple line is fixed, the criteria are shown to be different from those known for isotropic interfaces.


Herring Condition Additional Relation Triple Line Boundary Network Mechanical Equilibrium Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. M. SAYLOR, A. MORAWIEC and G. S. ROHRER, Acta Mater. 51 (2003) 3675.CrossRefGoogle Scholar
  2. 2.
    C. HERRING, in “The Physics of Powder Metallurgy”, edited by W. E. Kingston, (McGraw-Hill, New York, 1951) p. 143.Google Scholar
  3. 3.
    C. S. SMITH, Trans. AIME 175 (1948) 15.Google Scholar
  4. 4.
    D. W. HOFFMAN and J. W. CAHN, Surf. Sci. 31 (1972) 365.CrossRefGoogle Scholar
  5. 5.
    J. DE CONINCK, P. DE GOTTAL and F. MENU, J. Stat. Phys. 56 (1989) 23.CrossRefMathSciNetADSGoogle Scholar
  6. 6.
    B. NESTLER and A. A. WHEELER, Phys. Rev. E 57 (1998) 2602.CrossRefADSGoogle Scholar
  7. 7.
    V. TRASKINE, P. PROTSENKO, Z. SKVORTSOVA and P. VOLOVITCH, Colloids Surf. A 166 (2000) 261.CrossRefGoogle Scholar
  8. 8.
    D. LAPORTE and E. B. WATSON, Chem. Geol. 124 (1995) 161.CrossRefGoogle Scholar
  9. 9.
    G. H. BISHOP, Trans. AIME 242 (1968) 1343.Google Scholar
  10. 10.
    H. J. VOGEL and L. RATKE, Acta Metall. Mater. 39 (1991) 641.CrossRefGoogle Scholar
  11. 11.
    D. CHATAIN, E. RABKIN, J. DERENNE and J. BERNARDINI, Acta Mater. 49 (2001) 1123.CrossRefGoogle Scholar
  12. 12.
    A. S. LAZARENKO, I. M. MIKHAILOVSKIJ, V. B. RABUKHIN and O. A. VELIKODNAYA, Acta Metall. Mater. 43 (1995) 639.CrossRefGoogle Scholar
  13. 13.
    A. H. KING, Interf. Sci. 7 (1999) 251.CrossRefGoogle Scholar
  14. 14.
    D. WEYGAND, Y. BRÉCHET and J. LÉPINOUX, Interf. Sci. 7 (1999) 285.CrossRefGoogle Scholar
  15. 15.
    P. FORTIER, G. PALUMBO, G. D. BRUCE, W. A. MILLER and K. T. AUST, Scripta Metall. Mater. 25 (1991) 177.CrossRefGoogle Scholar
  16. 16.
    F. MORGAN and J. E. TAYLOR, Scripta Metall. Mater. 25 (1991) 1907.CrossRefGoogle Scholar
  17. 17.
    J. E. TAYLOR, Interf. Sci. 7 (1999) 243.CrossRefGoogle Scholar
  18. 18.
    S. G. SRINIVASAN, J. W. CAHN, H. JÓNSSON, and G. KALONJI, Acta Mater. 47 (1999) 2821.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Institute of Metallurgy and Materials SciencePolish Academy of SciencesKrakówPoland

Personalised recommendations