Journal of Materials Science

, Volume 41, Issue 2, pp 445–453 | Cite as

Synthesis, characterization and devitrification behaviour of an yttrium containing boroaluminate glass

  • N. Hémono
  • J. Rocherullé
  • M. Le Floch
  • B. Bureau
  • P. Bénard-Rocherullé


The glass forming region in the B2O3-Al2O3-Y2O3 composition diagram has been determined by a melting and quenching procedure at temperatures up to 1800°C. Different physical characteristics (density, coefficient of thermal expansion, glass transition and crystallization peak temperatures) have been determined for a 35B2O3-40Al2O3-25Y2O3 glass composition (in mol.%). By using a predictive model and some NMR structural data, different elastic moduli (Young's modulus, bulk modulus, shear modulus and Poisson's ratio) have been calculated. The devitrification behaviour has also been studied. Internal crystallization is the dominant mechanism and a new (Y, Al)BO3 ternary phase has been characterized by X-ray powder diffraction. The temperature and time nucleation dependence have been determined from DTA experiments as well as the crystallization kinetics (i.e. the Avrami exponent and the activation energy for crystal growth).


Crystallization Thermal Expansion Shear Modulus Yttrium Bulk Modulus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I. N. CHAKRABORTY, J. E. SHELBY and R. A. CONDRATE, J. Am. Ceram. Soc. 67(12) (1984) 782.Google Scholar
  2. 2.
    I. N. CHAKRABORTY, D. E. DAY, J. C. LAPP and J. E. SHELBY, ibid. 68(7) (1985) 368.Google Scholar
  3. 3.
    J. F. MACDOWELL, ibid. 73(8) (1990) 2287.CrossRefGoogle Scholar
  4. 4.
    R. K. BROW and D. R. TALLANT, ibid. 80(5) (1997) 1239.Google Scholar
  5. 5.
    H. L. RUTZ, D. E. DAY and C. F. SPENCER, ibid. 73(6) (1990) 1788.CrossRefGoogle Scholar
  6. 6.
    D. MASSIOT, B. COTE, F. TAULELLE and J. P. COUTURE, “Application of NMR Spectroscopy to cement Science,” edited by Colombet and Grimmer (Gordon and Breach Publishers, 1994) p. 153.Google Scholar
  7. 7.
    C. MAGNENET, D. MASSIOT, I. KLUR and J. P. COUTURE, J. Mater. Sci. 35 (2000) 115.CrossRefGoogle Scholar
  8. 8.
    K. L. D. MACKENZIE and M. E. SMITH, Multinuclear Solid-state NMR of Inorganic Materials, Pergamon Materials Series (2002) p. 420.Google Scholar
  9. 9.
    A. MAKISHIMA and J. D. MACKENZIE, J. Non-Cryst. Sol. 12 (1973) 35.CrossRefGoogle Scholar
  10. 10.
    J. ROCHERULLÉ, C. ECOLIVET, M. POULAIN, P. VERDIER and Y. LAURENT, ibid. 108 (1989) 187.Google Scholar
  11. 11.
    A. MAKISHIMA and J. D. MACKENZIE, ibid. 17 (1975) 147.CrossRefGoogle Scholar
  12. 12.
    C. S. RAY and D. E. DAY, J. Am. Ceram. Soc. 72 (1990) 439.Google Scholar
  13. 13.
    Idem., ibid. 80(12) (1997) 3100.Google Scholar
  14. 14.
    M. AVRAMI, J. Chem. Phys. 8 (1940) 212.CrossRefGoogle Scholar
  15. 15.
    H. YINNON and D. R. UHLMANN, J. Non-Cryst. Sol. 54 (1983) 253.CrossRefGoogle Scholar
  16. 16.
    K. MATUSITA and S. SAKKA, ibid. 38 (1980) 741.CrossRefGoogle Scholar
  17. 17.
    R. J. KIRKPATRICK and R. K. BROW, Solid State NMR 5 (1995) 9.CrossRefGoogle Scholar
  18. 18.
    R. K. BROW, J. Non-Cryst. Sol. 263/264 (2000) 1.CrossRefGoogle Scholar
  19. 19.
    D. MASSIOT, F. FAYON, M. CAPRON, I. KING, S. LE CALVÉ, B. ALONSO, J.-O. DURAND, B. BUJOLI, Z. GAN and G. HOATSON, Magnetic Resonance in Chemistry 40 (2002) 70.Google Scholar
  20. 20.
    T. ROISNEL and J. RODRIGUEZ-CARVAJAL, in Proceedings of European Powder Diffraction Conference (EPDIC 7) (2001) vol. 118, p. 378.Google Scholar
  21. 21.
    A. BOULTIF and D. LOUËR, J. Appl. Crystallogr. 24 (1991) 987.CrossRefGoogle Scholar
  22. 22.
    D. LOUËR and M. LOUËR, ibid. 5 (1972) 271.Google Scholar
  23. 23.
    P. M. DE WOLFF, ibid. 12 (1968) 60.Google Scholar
  24. 24.
    G. S. SMITH and R. L. SNYDER, ibid. 1 (1979) 108.Google Scholar
  25. 25.
    G. CHADEYRON, M. EL-GHOZZI, R. MAHIOU, A. ARBUS and J. C. COUSSEINS, J. Solid State Chem. 128 (1997) 261.CrossRefGoogle Scholar
  26. 26.
    R. E. NEWNHAM, M. S. REDMAN and R. P. SANTERO, J. Am. Ceram. Soc. 46 (1963) 253.Google Scholar
  27. 27.
    S. C. ABRAHAMS, J. L. BERNSTEIN and E. T. KEVE, J. Appl. Crystallogr. 4 (1971) 284.CrossRefGoogle Scholar
  28. 28.
    A. VEGAS, Acta Cryst. B33 (1977) 3607.Google Scholar
  29. 29.
    E. L. BELOKONEVA et al., Zh. Strukt. Khim. 22 (1981) 196.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • N. Hémono
    • 1
  • J. Rocherullé
    • 1
  • M. Le Floch
    • 1
  • B. Bureau
    • 1
  • P. Bénard-Rocherullé
    • 2
  1. 1.UMR CNRS 6512 Verres et Céramiques (LVC), Institut de Chimie de RennesUniversité de Rennes IRennes CedexFrance
  2. 2.UMR CNRS 6511 Chimie du Solide et Inorganique Moléculaire (LCSIM), Institut de Chimie de RennesUniversité de Rennes IRennes CedexFrance

Personalised recommendations