Journal of Materials Science

, Volume 40, Issue 9–10, pp 2341–2348 | Cite as

Interfacial analysis of (La0.6Sr0.4)(Co0.2Fe0.8)O3− δ substrates wetted by Ag-CuO

  • K. Scott Weil
  • Jin Yong Kim
  • John S. Hardy
Proceedings of the IV International Conference High Temperature Capillarity


The wetting of (La0.6Sr0.4)(Co0.2Fe0.8)O3−δ substrates by Ag-CuO was investigated using the standard sessile drop technique, followed by metallographic examination of the quenched specimens. The addition of CuO substantially improves the wetting of these substrates by silver. The largest improvements in contact angle are observed at low CuO-content, apparently through the formation of a homogeneous silver-copper oxide liquid at the area of sessile drop/substrate contact. At a critical composition of x CuO~ 8 mol% the mechanism of wetting changes, undergoing a transition initiated by the formation of two immiscible liquids within the molten sessile drop.


Contact Angle Copper Oxide Sessile Drop American Ceramic Society Critical Composition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. R. DOUGHTY and H. HIND, Key Eng. Mater. 122–124 (1996) 145.CrossRefGoogle Scholar
  2. 2.
    J. W. STEVENSON, T. R. ARMSTRONG, R. D. CARNEIM, L. R. PEDERSON and W. J. WEBER, J. Electrochem. Soc. 143 (1996) 2722.CrossRefGoogle Scholar
  3. 3.
    Y.-S. CHOU, J. W. STEVENSON, T. R. ARMSTRONG, J. S. HARDY, K. HASINSKA and L. R. PEDERSON, J. Mater. Res. 15 (2000) 1505.CrossRefADSGoogle Scholar
  4. 4.
    C. C. SHÜLER, A. STUCK, N. BECK, H. KESER and U. TÅCK, J. Mater. Sci.: Mater. in Elec. 11 (2000) 389.CrossRefGoogle Scholar
  5. 5.
    K. M. ERSKINE, A. M. MEIER and S. M. PILGRIM, J. Mater. Sci. 37 (2002) 1705.CrossRefGoogle Scholar
  6. 6.
    K. S. WEIL and D. M. PAXTON, in Proceedings of the 26th Annual Conference on Composites, Advanced Ceramics, Materials, and Structures: A, edited by H.-T. Lin and M. Singh (The American Ceramic Society, Westerville, OH, 2002) p. 263.Google Scholar
  7. 7.
    R. S. ROTH, J. R. DENNIS and H. F. McMURDIE (eds.), “Phase Diagrams for Ceramists” (The American Ceramic Society, Westerville, OH, 1987) Vol. VI, p. 197.Google Scholar
  8. 8.
    A. PETRIC, P. HUANG and F. TIETZ, Sol. St. Ion. 135 (2000) 719.CrossRefGoogle Scholar
  9. 9.
    D. A. MORTIMER and M. G. NICHOLAS, J. Mater. Sci. 8 (1973) 640.CrossRefADSGoogle Scholar
  10. 10.
    Z. B. SHAO, K. R. LIU, L. Q. LIU, H. K. LIU and S. DOU, J. Am. Ceram. Soc. 76 (1993) 2663.CrossRefGoogle Scholar
  11. 11.
    C. MOURE, D. GUTIERREZ, O. PENA and P. DURAN, J. Sol. St. Chem. 163 (2002) 377.CrossRefADSGoogle Scholar
  12. 12.
    H. W. HSU, Y. H. CHANG, G. J. CHEN and K. J. LIN, Mater. Sci. and Eng. B B64 (1999) 180.CrossRefGoogle Scholar
  13. 13.
    R. S. ROTH, J. R. DENNIS and H. F. McMURDIE (eds.), “Phase Diagrams for Ceramists” (The American Ceramic Society, Westerville, OH, 1987), Vol. V, p. 345.Google Scholar
  14. 14.
    J. W. CAHN, J. Chem. Phys. 66 (1977) 3667.CrossRefADSGoogle Scholar
  15. 15.
    R. N. GRUGEL and A. HELLAWELL, Met. Trans. 12A (1981) 669.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Pacific Northwest National LaboratoryRichlandUSA

Personalised recommendations