Journal of Materials Science

, Volume 40, Issue 9–10, pp 2281–2286 | Cite as

Atomistic simulations of reactive wetting in metallic systems

  • E. B. WebbIII
  • J. J. Hoyt
  • G. S. Grest
  • D. R. Heine
Proceedings of the IV International Conference High Temperature Capillarity


Atomistic simulations were performed to investigate high temperature wetting phenomena for metals. A sessile drop configuration was modeled for two systems: Ag(l) on Cu and Pb(l) on Cu. The former case is an eutectic binary and the wetting kinetics were greatly enhanced by the presence of aggressive interdiffusion between Ag and Cu. Wetting kinetics were directly dependent upon dissolution kinetics. The dissolution rate was nearly identical for Ag(l) on Cu(100) compared to Cu(111); as such, the spreading rate was very similar on both surfaces. Pb and Cu are bulk immiscible so spreading of Pb(l) on Cu occurred in the absence of significant substrate dissolution. For Pb(l) on Cu(111) a precursor wetting film of atomic thickness emerged from the partially wetting liquid drop and rapidly covered the surface. For Pb(l) on Cu(100), a foot was also observed to emerge from a partially wetting drop; however, spreading kinetics were dramatically slower for Pb(l) on Cu(100) than on Cu(111). For the former, a surface alloying reaction was observed to occur as the liquid wet the surface. The alloying reaction was associated with dramatically decreased wetting kinetics on Cu(100) versus Cu(111), where no alloying was observed. These two cases demonstrate markedly different atomistic mechanisms of wetting where, for Ag(l) on Cu, the dissolution reaction is associated with increased wetting kinetics while, for Pb(l) on Cu, the surface alloying reaction is associated with decreased wetting kinetics.


Contact Line Spreading Rate Atomistic Simulation AgCu Dissolution Kinetic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. YOUNG, Philos. Trans. R. Soc. London 95 (1805) 65.CrossRefGoogle Scholar
  2. 2.
    W. P. HARDY, Philos. Mag. 38 (1919) 49.Google Scholar
  3. 3.
    D. BEAGLEHOLE, J. Phys. Chem. 93 (1989) 893.CrossRefGoogle Scholar
  4. 4.
    F. HESLOT, N. FRAYSSE and A. M. CAZABAT, Nature (London) 338 (1989) 640; F. HESLOT, A. M. CAZABAT and P. LEVINSON, Phys. Rev. Lett. 62 (1989) 1286; F. HESLOT, A. M. CAZABAT, P. LEVINSON and N. FRAYSSE, ibid. 65 (1990) 599.Google Scholar
  5. 5.
    M. J. DE RUIJTER, M. CHARLOT, M. VOUÉ and J. D. CONINCK, Langmuir 16 (2000) 2363.CrossRefGoogle Scholar
  6. 6.
    T. D. BLAKE and J. M. HAYNES, J. Colloid Interf. Sci. 30 (1969) 421.CrossRefGoogle Scholar
  7. 7.
    B. W. CHERRY and C. M. HOLMES, ibid. 29 (1969) 174.CrossRefGoogle Scholar
  8. 8.
    L. H. TANNER, J. Phys. D: App. Phys. 12 (1979) 1473.CrossRefADSGoogle Scholar
  9. 9.
    P. G. DE GENNES, Rev. Mod. Phys. 57 (1985) 827.CrossRefADSGoogle Scholar
  10. 10.
    S. F. BURLATSKY, G. OSHANIN, A. M. CAZABAT and M. MOREAU, Phys. Rev. Lett. 76 (1996) 86.CrossRefPubMedADSGoogle Scholar
  11. 11.
    M. VOUÉ and J. D. CONINCK, Acta Mater. 48 (2000) 4405.CrossRefGoogle Scholar
  12. 12.
    D. R. HEINE, G. S. GREST and E. B. WEBB III, Phys. Rev. E 68 (2003) 061603.CrossRefADSGoogle Scholar
  13. 13.
    K. LANDRY and N. EUSTATHOPOULOS, Acta Mater. 44 (1996) 3923.CrossRefGoogle Scholar
  14. 14.
    C. IWAMOTO and S. TANAKA, ibid. 50 (2002) 749.CrossRefGoogle Scholar
  15. 15.
    F. G. YOST, P. A. SACKINGER and E. J. O’TOOLE, ibid. 46 (1998) 2329.CrossRefGoogle Scholar
  16. 16.
    R. ASTHANA and N. SOBCZAK, JOM-e 52 (2000) 1,
  17. 17.
    D. R. MILNER, British Welding Jnl. 90 (1958).Google Scholar
  18. 18.
    A. MORTENSEN, B. DREVET and N. EUSTATHOPOULOS, Scripta Mater. 36 (1997) 645.CrossRefGoogle Scholar
  19. 19.
    F. G. YOST, ibid. 42 (2000) 801.CrossRefGoogle Scholar
  20. 20.
    O. DEZELLUS, F. HODAJ and N. EUSTATHOPOULOS, Acta Mater. 50 (2002) 4741.CrossRefGoogle Scholar
  21. 21.
    J. A. WARREN, W. J. BOETTINGER and A. R. ROOSEN, ibid. 46 (1998) 3247.CrossRefGoogle Scholar
  22. 22.
    R. GE, P. C. CLAPP and J. A. RIFKEN, Surf. Sci. 426 (1999) L413.CrossRefGoogle Scholar
  23. 23.
    T. SWILER, Acta Mater. 48 (2000) 4775.CrossRefGoogle Scholar
  24. 24.
    J. MOON et al., Comp. Mat. Sci. 25 (2002) 503.CrossRefGoogle Scholar
  25. 25.
    E. B. WEBB III and G. S. GREST, Scripta Mater. 47 (2002) 393.CrossRefGoogle Scholar
  26. 26.
    E. B. WEBB III, G. S. Grest and D. R. HEINE, Phys. Rev. Lett. 91, (2003) 236102.CrossRefADSGoogle Scholar
  27. 27.
    E. B. WEBB III, G. S. Grest, D. R. Heine and J. J. HOYT, Acta Mater. submitted.Google Scholar
  28. 28.
    M. S. DAW and M. I. BASKES, Phys. Rev. B 29 (1984) 6443.CrossRefADSGoogle Scholar
  29. 29.
    S. M. FOILES, M. I. BASKES and M. S. DAW, ibid. 33 (1986) 7983.CrossRefADSGoogle Scholar
  30. 30.
    M. S. DAW, S. M. FOILES and M. I. BASKES, Mater. Sci. Rep. 9 (1993) 251.CrossRefGoogle Scholar
  31. 31.
    J. J. HOYT, J. W. GARVIN, E. B. WEBB III and M. ASTA, Modell. Simul. Mater. Sci. Eng. 11 (2003) 287.CrossRefADSGoogle Scholar
  32. 32.
    H. S. LIM, C. K. ONG and F. ERCOLESSI, Surf. Sci. 269/270 (1992) 1109.CrossRefGoogle Scholar
  33. 33.
    M. P. ALLEN and D. J. TILDESLEY, “Computer Simulation of Liquids” (Clarendon, Oxford, 1987).MATHGoogle Scholar
  34. 34.
    F. G. YOST and E. J. O’TOOLE, Acta Mater. 46 (1998) 5143.CrossRefGoogle Scholar
  35. 35.
    N. EUSTATHOPOULOS, ibid. 46 (1998) 2319.CrossRefGoogle Scholar
  36. 36.
    R. VOITOVITCH, A. MORTENSEN, F. HODAJ and N. EUSTATHOPOULOS, ibid. 47 (1999) 1117.CrossRefGoogle Scholar
  37. 37.
    Graphics are rendered using the code Raster3D. E. A. MERRITT and D. J. BACON, Meth. in Enzymol. 277 (1997) 505.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • E. B. WebbIII
    • 1
  • J. J. Hoyt
    • 1
  • G. S. Grest
    • 1
  • D. R. Heine
    • 1
  1. 1.Sandia National LaboratoriesAlbuquerque

Personalised recommendations