Advertisement

Journal of Materials Science

, Volume 40, Issue 9–10, pp 2161–2166 | Cite as

A new method for simultaneous measurement of surface tension and viscosity

  • H. Fujii
  • T. Matsumoto
  • T. Ueda
  • K. Nogi
Proceedings of the IV International Conference High Temperature Capillarity

Abstract

A new method for the simultaneous mesurement of the surface tension and viscosity of a liquid was developed by combining the principle of the oscillating drop method with a microgravity environment. This new method can be used in an ordinary laboratory. A droplet falls for 1.5 m in approximately 0.55 s. During this short period, the surface oscillation of the droplet is recorded by two high speed line sensors equipped with a laser backlight and cylindrical lenses. The recording speed and resolution of the line sensors are 84000 line/s and 2048 pixels, respectively. The laser backlight forms a shadow of the droplet, and each of the cylindrical lenses makes the shadow into be a line, allowing the maximum diameter to be precisely measured by a line sensor. Before focusing the laser column to a line, it was split into two columns and each of them is forcused into a different line in order to determine the changes in the diameters in two right-angled directions. The measured oscillations show only a single peak for the n = 2 mode in the Fourier spectrum. This fact guarantees that the surface oscillation is almost ideal, and the simple equations for a spherical droplet can be used without any corrections.

Keywords

Surface Tension Thermophysical Property Cylindrical Lens Spherical Droplet Microgravity Environment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. L. CUMMINGS and D. A. BLACKBURN, J. Fluid Mech. 224 (1991) 395.MATHCrossRefADSGoogle Scholar
  2. 2.
    P. V. R. SURYANARAYANA and Y. BAYAZITOGLE, Phys. Fluids A3 (1991) 967.ADSGoogle Scholar
  3. 3.
    K. ECKLER, I. EGRY and D. M. HERLACH, Mater. Sci. Eng. A133 (1991) 718.Google Scholar
  4. 4.
    I. EGRY, G. LOHOEFER and G. JACOBS, Phys. Rev. Lett. 75 (1995) 4043.CrossRefPubMedADSGoogle Scholar
  5. 5.
    H. FUJII, T. MATSUMOTO, N. HATA, T. NAKANO, M. KOHNO and K. NOGI, Metall. Mater. Trans. A31 (2000) 1585.CrossRefGoogle Scholar
  6. 6.
    H. FUJII, T. MATSUMOTO and K. NOGI, Acta Mater. 48 (2000) 2933.CrossRefGoogle Scholar
  7. 7.
    T. MATSUMOTO, T. NAKANO, H. FUJII, M. KAMAI and K. NOGI, Phys. Rev. E65 (2002) 031201.ADSGoogle Scholar
  8. 8.
    LOAD RAYLEIGH, Proc. R. Soc. London 29 (1879) 71.CrossRefGoogle Scholar
  9. 9.
    H. LAMB, “Hydrodinamics,” 6th ed. (Cambridge University Press, Cambridge, 1932).Google Scholar
  10. 10.
    A. G. GAONKAR and R. D. NEUMAN, Colloids and Surface 27 (1987) 1.Google Scholar
  11. 11.
    J. KESTIN and M. SOKOLOV, Phys. Chem. Ref. Data 7 (1978) 941.CrossRefADSGoogle Scholar
  12. 12.
    H. SODA, A. MCLEAN and W. MIKKER, Trans. JIM 18 (1977) 445.Google Scholar
  13. 13.
    S. K. RHEE, J. Amer. Ceram. Soc. 53 (1970) 639.CrossRefGoogle Scholar
  14. 14.
    K. NOGI, K. OISHI and K. OGINO, Mat. Trans. JIM 30 (1989) 137.Google Scholar
  15. 15.
    A. KASAMA, T. IIDA and Z. MORITA, J. Jpn Inst. Metals. 40 (1976) 1030.Google Scholar
  16. 16.
    G. METZGER, Z. Phys. Chem. 211 (1959) 1.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Joining and Welding Research InstituteOsaka UniversityIbaraki, OsakaJapan

Personalised recommendations