Advertisement

Journal of Materials Science

, Volume 40, Issue 15, pp 4009–4017 | Cite as

Effects of density and strain rate on properties of syntactic foams

  • E. Woldesenbet
  • Nikhil Gupta
  • A. Jadhav
Article

Abstract

Syntactic foams are characterized for high strain rate compressive properties using Split-Hopkinson Pressure Bar (SHPB) technique in this study. The results at high strain rates are compared to quasi-static strain rate compressive properties of the same material. Four different types of syntactic foams are fabricated with the same matrix resin system but different size microballoons for testing purpose. The microballoons have the same outer radius. However, their internal radius is different leading to a difference in their density and strength. The volume fraction of the microballoons in syntactic foams is maintained at 0.65. Such an approach is helpful in isolating and identifying the contribution of matrix and microballoons to the dynamic compressive properties of syntactic foams. Results demonstrate considerable increase in peak strength of syntactic foams for higher strain rates and increasing density. It is also observed that the elastic modulus increases with increasing strain rate and density. Scanning electron microscopy is carried out to understand the fracture modes of these materials and the density effect on high strain rate properties of syntactic foam.

Keywords

Elastic Modulus High Strain Rate Fracture Mode Outer Radius Peak Strength 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. A. SHUTOV, “Handbook of Polymeric Foams and Foam Technology” (Hanser Publishers, New York, 1991) p. 355.Google Scholar
  2. 2.
    K. ASHIDA, “Handbook of Plastic Foams: Types, Properties, Manufacture and Applications” (Noyes Publications, New Jersey, 1995) p. 147.Google Scholar
  3. 3.
    N. GUPTA and E. WOLDESENBET, Composite Structures 61(4) (2003) 311.Google Scholar
  4. 4.
    C. S. KARTHIKEYAN, KISHORE and S. SANKARAN, J. Reinf. Plast. Compos. 20(11) (2001) 982.Google Scholar
  5. 5.
    A. K. NOOR, W. S. BURTON and C. W. BERT, Appl. Mech. Rev. 49(3) (1996) 155.Google Scholar
  6. 6.
    N. GUPTA, KSHORE, E. WOLDESENBET and S. SANKARAN, J. Mater. Sci. 36(18) (2001) 4485.Google Scholar
  7. 7.
    N. GUPTA, E. WOLDESENBET and KISHORE, J. Mater. Sci. 37(15) (2002) 3199.Google Scholar
  8. 8.
    C. S. KARTHIKEYAN, S. SANKARAN, M. N. JAGDISH KUMAR and KISHORE, J. Appl. Poly. Sci. 81 (2001) 405.Google Scholar
  9. 9.
    E. RIZZI, E. PAPA and A. CORIGLIANO, Int. J. Solids Struct. 37 (2000) 5773.Google Scholar
  10. 10.
    J. R. M. D’ALMEIDA, Compos. Sci. Technol. 59 (1999) 2087.Google Scholar
  11. 11.
    P. BUNN and J.T. MOTTRAM, Composites 24(7) (1993) 565.Google Scholar
  12. 12.
    N. GUPTA and E. WOLDESENBET, Composites Part A 35(1) (2004) 103.Google Scholar
  13. 13.
    M. NARKIS, S. KENIG and M. PUTERMAN, Polym. Compos. 5(2) (1984) 159.Google Scholar
  14. 14.
    R. C. PROGELHOF, in Proceedings of Instrumented Impact Testing of Plastics and Composite Materials (Houston, March 1986) (ASTM) p. 105.Google Scholar
  15. 15.
    D. F. SOUNIK, P. GANSEN, J. L CLEMONS and J. W. LIDDLE, J. Mater. Manuf. 106(5) (1997) 211.Google Scholar
  16. 16.
    W. HALL, M. GUDEN and C. J. YU, Scripta Mater. 34 (2000) 515.Google Scholar
  17. 17.
    A. DANNEMANN and J. LANKFORD, Mater. Sci Eng. A293 (2000) 157.Google Scholar
  18. 18.
    T. MUKAI, H. KANAHASHI, T. MIYOSHI, M. MABUCHI, T. G. NIEH and K. HIGASHI, Scripta Materialia 40(8) (1999) 921.Google Scholar
  19. 19.
    V. S. DESHPANDE and N. A. FLECK, Int. J. Impact Engng. 24(3) (2000) 277.Google Scholar
  20. 20.
    W. CHEN, F. LU and N. WINFREE, Exper. Mech. 42(1) (2002) 62.Google Scholar
  21. 21.
    A. RINDE and K. G. HOGE, J. Appl. Polym. Sci. 15 (1971) 1377.Google Scholar
  22. 22.
    W. E. BAKER, T. C. TOGAMI and J. C. WEIDER, Int. J. Impact Eng. 21(3) (1998) 149.Google Scholar
  23. 23.
    H. ZHAO and G. GARY, ibid. 21 (10) (1998) 827.Google Scholar
  24. 24.
    B. SONG, W. CHEN and D. J. FREW, J. Compos. Mater. 38(11) (2004) 915.Google Scholar
  25. 25.
    B. SONG, W. CHEN, T. YANAGITA and D. J. FREW, Comp. Struct. 67 (2005) 289.Google Scholar
  26. 26.
    N. GUPTA and E. WOLDESENBET, in Proceedings of 16th Annual Technical Conference of the American Society for Composites Proceedings (Blacksburg, VA, September, 2001), paper #055.Google Scholar
  27. 27.
    N. GUPTA and E. WOLDESENBET, in Proceedings of 17th Annual Technical Conference of the American Society for Composites (Lafayette, IN, September, 2002), Paper # 042.Google Scholar
  28. 28.
    H. KOLSKY, Proc. Phys. Soc. B62 (1949) 676.Google Scholar
  29. 29.
    A. KAISER, A. WICKS, L. WILSON and W. SAUNDERS, Thesis Submitted to Virginia Polytechnic Institute and State University, Blacksburg, Virginia (1998) 1–84.Google Scholar
  30. 30.
    T. YONEYAMA, H. DOI, E. KOBAYASHI and H. HAMANAKA, J. Mater. Sci. 11 (2000) 333.Google Scholar
  31. 31.
    A. JADHAV, E. WOLDESENBET and S. S. PANG, Composites Part B 34(4) (2003) 339.Google Scholar

Copyright information

© Springer Science + Business Media, Inc 2005

Authors and Affiliations

  1. 1.Mechanical Engineering DepartmentSouthern UniversityBaton RougeUSA
  2. 2.Mechanical, Aerospace and Manufacturing Engineering DepartmentPolytechnic UniversityBrooklynUSA
  3. 3.Mechanical Engineering DepartmentLouisiana State UniversityBaton RougeUSA

Personalised recommendations