Advertisement

Journal of Materials Science

, Volume 40, Issue 18, pp 5045–5047 | Cite as

Predictive model for the thermal conductivity of porous materials with matrix-inclusion type microstructure

  • G. Tichá
  • W. Pabst
  • D. S. Smith
Letters

Keywords

Polymer Microstructure Thermal Conductivity Predictive Model Porous Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgement

Support by the Czech Ministry of Education, Youth and Sports under Grant No. MSM 223100002 (“Preparation and Properties of Advanced Materials — Modelling, Characterization, Technology“) is gratefully acknowledged. We thank Celine Poulier and Jan Demjan for performing the laser-flash measurements.

References

  1. 1.
    A. EUCKEN, Ceram. Abstr. 11 (1932) 576.Google Scholar
  2. 2.
    A. EUCKEN, Ceram. Abstr. 12 (1933) 231.Google Scholar
  3. 3.
    W. D. KINGERY and M. C. McQUARRIE, J. Am. Ceram. Soc. 37 (1954) 67.Google Scholar
  4. 4.
    J. FRANCL and W. D. KINGERY, ibid. 37 (1954) 80.Google Scholar
  5. 5.
    W. D. KINGERY, ibid. 37 (1954) 88.Google Scholar
  6. 6.
    A. L. LOEB, ibid. 37 (1954) 96.Google Scholar
  7. 7.
    J. FRANCL and W. D. KINGERY, ibid. 37 (1954) 99.Google Scholar
  8. 8.
    W. D. KINGERY, J. FRANCL, R. L. COBLE and T. VASILOS, ibid. 37 (1954) 107.Google Scholar
  9. 9.
    P. G. KLEMENS and M. GELL, Mater. Sci. Eng. A245 (1998) 143.Google Scholar
  10. 10.
    S. RAGHAVAN, H. WANG, R. B. DINWIDDIE, W. D. PORTER and M. J. MAYO, Scripta Mater. 39 (1998) 1119.CrossRefGoogle Scholar
  11. 11.
    S. SHARAFAT, A. KOBAYASHI, V. OGDEN and N. M. GHONIEM, Vacuum 59 (2000) 185.CrossRefGoogle Scholar
  12. 12.
    Z. WANG, A. KULKARNI, S. DESHPANDE, T. NAKAMURA and H. HERMAN, Acta Mater. 51 (2003) 5319.CrossRefGoogle Scholar
  13. 13.
    A. KULKARNI, A. VAIDYA, A. GOLAND, S. SAMPATH and H. HERMAN, Mater. and Engineering A359 (2003) 100.CrossRefGoogle Scholar
  14. 14.
    F. CERNUSCHI, S. AHMANIEMI, P. VUORISTO and T. MÄNTYLÄ, J. Eur. Ceram. Soc. 24 (2004) 2657.CrossRefGoogle Scholar
  15. 15.
    G. PEZZOTTI, I. KAMADA and S. MIKI, J. Eur. Ceram. Soc. 20 (2000) 1197.CrossRefGoogle Scholar
  16. 16.
    F. Y. C. BOEY and A. I. Y. TOK, J. Mater. Process. Technol. 140 (2003) 413.CrossRefGoogle Scholar
  17. 17.
    W. J. PARKER, R. J. JENKINS, C. P. BUTLER and G. L. ABBOT, J. Appl. Phys. 32 (1961) 1679.CrossRefGoogle Scholar
  18. 18.
    J. C. MAXWELL, in “A Treatise on Electricity and Magnetism,” (Clarendon Press, London, 1873) p.194.Google Scholar
  19. 19.
    R. LANDAUER, in “Electrical, Transport and Optical Properties of Inhomogeneous Media,” edited by J. C. Garland and D. B. Tanner (American Institute of Physics, New York, 1978) pp. 2–43.Google Scholar
  20. 20.
    K. Z. MARKOV, in “Heterogeneous Media,” edited by K. Z. MARKOV and L. PREZIOSI (Birkhäuser, Basel, 2000) pp.1–162.Google Scholar
  21. 21.
    S. TORQUATO, in “Random Heterogeneous Materials — Microstructure and Macroscopic Properties,” (Springer, New York, 2002), pp. 6–12, 403–463.Google Scholar
  22. 22.
    W. PABST, J. Mater. Sci. Lett. (submitted).Google Scholar
  23. 23.
    R. L. COBLE and W. D. KINGERY, J. Amer. Ceram. Soc. 39 (1956) 377.Google Scholar
  24. 24.
    W. PABST and E. GREGOROVÁ, J. Mater. Sci. Lett. 22 (2003) 959.CrossRefGoogle Scholar
  25. 25.
    W. PABST and E. GREGOROVÁ, Ceramics−Silikáty 48 (2004) 14.Google Scholar
  26. 26.
    M. MOONEY, J. Colloid Sci. 6 (1951) 162.CrossRefGoogle Scholar
  27. 27.
    W. PABST, Ceramics−Silikáty 48 (2004) 6.Google Scholar
  28. 28.
    W. PABST and E. GREGOROVÁ, J. Mater. Sci. Lett. 22 (2003) 1673.CrossRefGoogle Scholar
  29. 29.
    W. PABST and E. GREGOROVÁ, J. Mater. Sci. 39 (2004) 3213.CrossRefGoogle Scholar
  30. 30.
    W. PABST, E. GREGOROVÁ and G. TICHÁ, J. Eur. Ceram. Soc. (in press).Google Scholar
  31. 31.
    G. TICHÁ, Elastické a termoelastické vlastnosti keramiky ze soustavy Al2O3-ZrO2 (Elastic and thermoelastic properties of ceramics in the alumina-zirconia system, in Czech). Ph.D. thesis, ICT Prague, Prague (in preparation).Google Scholar
  32. 32.
    S. FAYETTE, Conduction thermique dans les matériaux hétérogenes, influence des joints de grains (Thermal conductivity in heterogeneous materials, influence of the grain boundaries, in French). Ph.D. thesis, University of Limoges, Limoges, France 2001.Google Scholar
  33. 33.
    E. TÝNOVÁ, W. PABST, E. GREGOROVÁ and J. HAVRDA, Key Eng. Mater. 206/213 (2002) 1969.Google Scholar
  34. 34.
    W. PABST, E. TÝNOVÁ, J. MIKAČ, E. GREGOROVÁ and J. HAVRDA, J. Mater. Sci. Lett. 21 (2002) 1101.CrossRefGoogle Scholar
  35. 35.
    S. FAYETTE, D. S. SMITH, A. SMITH and C. MARTIN, J. Eur. Ceram. Soc. 20 (2000) 297.CrossRefGoogle Scholar
  36. 36.
    D. S. SMITH, S. GRANDJEAN, J. ABSI, S. KADIEBU and S. FAYETTE, High Temp. High Press. 35/36 (2003/2004) 93.CrossRefGoogle Scholar
  37. 37.
    D. S. SMITH, S. FAYETTE, S. GRANDJEAN, C. MARTIN, R. TELLE and T. TONNESSEN, J. Amer. Ceram. Soc. 86 (2003) 105.Google Scholar
  38. 38.
    E. TÝNOVÁ, E. GREGOROVÁ, W. PABST and M. ČERNÝ, in Proceedings of the 5th Conference on Preparation of Ceramic Materials (Herlany, Slovakia, 17–19 June 2003), edited by B. Plešingerovä and T. Kuffa (TU Košice, Košice, 2003) pp. 81–85.Google Scholar
  39. 39.
    J.-F. BISSON, D. FOURNIER, M. POULAIN, O. LAVIGNE and R. MÉVREL, J. Amer. Ceram. Soc. 83 (2000) 1993.Google Scholar
  40. 40.
    K. W. SCHLICHTING, N. P. PADTURE and P. G. KLEMENS, J. Mater. Sci. 36 (2001) 3003.CrossRefGoogle Scholar
  41. 41.
    H.-S. YANG, G.-R. BAI, L. J. THOMPSON and J. A. EASTMAN, Acta Mater. 50 (2002) 2309.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc 2005

Authors and Affiliations

  • G. Tichá
    • 1
  • W. Pabst
    • 1
  • D. S. Smith
    • 2
  1. 1.Department of Glass and Ceramics, Institute of Chemical Technology in Prague (ICT Prague)Czech Republic
  2. 2.Groupe d'Etude des Matériaux Hétérogenes, Ecole Nationale Supérieure de Céramique Industrielle (ENSCI)Limoges CedexFrance

Personalised recommendations