Journal of Materials Science

, Volume 40, Issue 21, pp 5635–5640 | Cite as

Wear rate, frictional temperature, and energy consumption of steel 52100 with different microstructures during sliding



In a concerned tribological system, mechanical behavior such as friction and wear, microstructural evolution, and change in environmental temperature impact each other. A complete understanding of these interactions between the above factors is important for a tribological system to function well. In this study, the relationships among the wear rate, the frictional surface temperature, the heat consumption, and the friction energy consumption of steel 52100 with different microstructures during dry sliding were investigated using wear tests and theoretical approaches. The experimental results showed that the wear rate depends strongly on the thermal physical properties of the different microstructures due to their different energy consumptions during sliding. The calculations based on a frictional temperature field model were consistent with the experimental observations.


Microstructure Energy Consumption Surface Temperature Mechanical Behavior Temperature Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. C. LIM and M. F. ASHBY, Acta Metall. 35 (1987) 1.CrossRefGoogle Scholar
  2. 2.
    T. F. J. QUINN, Wear 153 (1992) 179.CrossRefGoogle Scholar
  3. 3.
    Y. WANG, T. C. LEI, M. F. YAN and C. Q. GAO, J Phys. D: Appl. Phys. 25 (1992) A165.CrossRefGoogle Scholar
  4. 4.
    H. CZICHOS, “Tribology” (Elsevier, Amsterdam, 1992).Google Scholar
  5. 5.
    F. E. JR. KENNEDY, Wear 100 (1984) 453.CrossRefGoogle Scholar
  6. 6.
    K. KNOTHE and S. LIEBELT, ibid. 189 (1995) 91.CrossRefGoogle Scholar
  7. 7.
    D. A. RIGNEY and W. A. GLAESER, “Wear of Materials” (ASME, New York, 1977) p. 41.Google Scholar
  8. 8.
    K. H. ZUM-GAHR, “Microstructures and Wear of Materials” (Elsevier, Amsterdam, 1987).Google Scholar
  9. 9.
    J. KALOUSEK, K. M. FEGREDO and E. E. LAUFFR, Wear 105 (1985) 199.CrossRefGoogle Scholar
  10. 10.
    Y. WANG, L. PAN and T. C. LEI, ibid. 143 (1991) 57.CrossRefGoogle Scholar
  11. 11.
    N. C. WELSH, Phil. Trans. R. Soc. Ser. A 257 (1965) 31.Google Scholar
  12. 12.
    Idem., ibid. 257 (1965) 51.Google Scholar
  13. 13.
    Y. WANG, M. F. YAN, X. D. LI and T. C. LEI, Trans. ASME J. Tribol. 116 (1994) 255.Google Scholar
  14. 14.
    Y. WANG, M. MCNALLAN, X. ZHANG and T. C. LEI, Scripta Mater. 36 (1997) 213.CrossRefGoogle Scholar
  15. 15.
    M. O. ROBBINS and J. KRIM, MRS Bulletin 23(6) (1998) 23.Google Scholar
  16. 16.
    D. A. RIGNEY and L. E. HAMMERBERG, ibid. 23(6) (1998) 32.Google Scholar
  17. 17.
    Y. WANG, X. D. LI and Z. C. FENG, Scripta Mater. 33 (1995) 1163.CrossRefGoogle Scholar
  18. 18.
    M. F. ASHBY and S. C. LIM, Scr. Metall. Mater. 24 (1990) 805.CrossRefGoogle Scholar
  19. 19.
    M. F. ASHBY, J. ABULAWI and H. S. KONG, Tribology Trans. 34 (1991) 577.Google Scholar
  20. 20.
    Y. WANG, X. L. SUN, S. L. XU and J. J. LIU, Wear 162–164 (1993) 183.Google Scholar
  21. 21.
    Y. S. TOULOUKIAN, “Thermophysical Properties of Matter, The TPRC Data Series,” Specific Heat (IFI/Plenum, New York-Washington, 1970)) Vol. 4.Google Scholar

Copyright information

© Springer Science + Business Media, Inc 2005

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringChangchun UniversityChangchunPeople's Republic of China, 130022
  2. 2.School of Materials Science and EngineeringHarbin Institute of TechnologyHarbinPeople's Republic of China, 150006

Personalised recommendations