Advertisement

Journal of Materials Science

, Volume 40, Issue 8, pp 1929–1935 | Cite as

A thermal imaging technique for studying crack development in wood under torsional loading

  • Zheng Chen
  • B. Gabbitas
  • D. Hunt
Article

Abstract

A thermal imaging system has been used for monitoring fracture in wood under both static and fatigue torsional loading. The thermal images of softwood test-pieces containing a knot under torsional loading predicted the cracking time and crack position that agreed well with visual observation. The thermal images obtained under torsional fatigue loading indicated a temperature increase during the unloading part of a loading cycle, which meant that thermal energy was dissipated during the relaxation stage of the loading cycle. The maximum temperature reached also increased as the loading cycles increased. Results from thermal images of a softwood indicated that the earlywood exchanged more thermal energy than latewood. Optical microscopy and SEM confirmed that in earlywood the region near a growth ring is the weaker area. For all the test pieces, whether softwood or hardwood, with or without a knot, the hotspots revealed during thermal imaging appeared before the load dropped sharply and these were confirmed to be the positions for crack initiation. This shows that it is possible to predict and depict failure and its progress using thermal imaging techniques.

Keywords

Fatigue Optical Microscopy Imaging System Thermal Energy Crack Initiation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. BUCUR, in “Acoustics of Wood” (CRC Press, Boca Raton, New York, USA, 1995) p. 221.Google Scholar
  2. 2.
    Z. CHEN and B. GABBITAS, in First international conference of the Europe Society of Wood Mechanics, Lausanne, Switzerland, 19–21 April, 2001, p. 393.Google Scholar
  3. 3.
    R. W. RICE and C. SKAAR, Wood Sci. Techn. 24 (1990) 123.Google Scholar
  4. 4.
    D. WU and G. BUSSE, TAPPI 1995 Europ. Plast. Lamin. Symp. 79(8) (1995) 119.Google Scholar
  5. 5.
    G. DILL-LANGER and S. AICHER, in Proceedings of COST Action E8 on Wood and Wood Fiber Composites, Stuttgart, Germany, 13–15 April, 2000, p. 93.Google Scholar
  6. 6.
    S. G. BURNAY, T. L. WILLIAMS and C. H. JONES, in “Applications of Thermal Imaging” (Hilger Ltd., Bristol, UK, 1988) p. 1.Google Scholar
  7. 7.
    A. CHRYSOCHOOS, O. MAISONNEUVE, G. MARTIN, H. CAUMON and J. C. CHEZEAUX, Nucl. Engns. Design 114 (1989) 323.Google Scholar
  8. 8.
    G. GAUSSORGUES, in “Infrared Thermography” (Chapman & Hall, University Press, Cambridge, UK, 1994) p. xv.Google Scholar
  9. 9.
    V. P. VAVILOV, in “Subjective Remarks on the Terminology used in Thermal/Infrared Nondestructive Testing” in Thermosense XVIII, edited by D. D. Burleigh and J. W. M. Spicer, SPIE Proc., 2766 (1996) 276.Google Scholar
  10. 10.
    W. N. REYNOLDS and G. M. WELLS, Brit. J. NDT 26(1) (1984) 40.Google Scholar
  11. 11.
    S. K. LAU, D. P. ALMOND and J. M. MILNE, NDT Eval. Intern. 24(4) (1991) 195.Google Scholar
  12. 12.
    R. L. THOMAS, L. D. FAVRO, P. K. KUO, T. AHMED, X. HAN, L. WANG, X. WANG and S. M. SHEPARD, in Proceedings of 15th International Congress on Acoustics, Trondheim, Norway, June 26–30, 1995 p. 433.Google Scholar
  13. 13.
    G. BUSSE, D. WU and W. KARPEN, J. Appl. Phys. 71(8) (1992) 3962.CrossRefGoogle Scholar
  14. 14.
    J. SEMBACH, D. WU, A. SALERNO, G. HORA and G. BUSSE, in Proceedings of Workshop on Nondestructive Testing of Panel Products, Llandudno, UK, 11 October, 1997 (J. Hague 1997) p. 41.Google Scholar
  15. 15.
    D. WU and G. BUSSE, in TAPPI 1995 Europ. Plast. Lamin. Symp. 79(8) (1995) 119.Google Scholar
  16. 16.
    Y. XU, S. OKUMURA and M. NOGUCHI, Mukuzai gakkaishi-J. 39(5) (1993) 544.Google Scholar
  17. 17.
    H. BERGLIND and A. DILLENZ, in 12th International Symposium on Nondestructive Testing of Wood, Sopron, Hungary, 2000 p. 413.Google Scholar
  18. 18.
    A. CHRYSOCHOOS and F. BELMAHJOUB, Arch. Mech. 44 (1992) 55.Google Scholar
  19. 19.
    A. CHRYSOCHOOS, H. LOUCHE, J. M. MURACCIOLE, M. NÉMOZ-GAILLARD, J. L. SAUREL and B. WATTRISSE, in IUTAM Symposium on Advanced Optical Methods and Applications in Solid Mechanics, Netherland, 2000, p. 313.Google Scholar
  20. 20.
    S. BARDET, in “Comportment thermoviscoelastique transverse du bois humide,” Ph.D Thesis (Montpellier University, France, 2001) p. 49.Google Scholar
  21. 21.
    K. PERSSON, Swedish Lund University/Lund Institute of Technology Report TVSM-3020 (1997)Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.University of New BrunswickFrederictonCanada
  2. 2.University of WaikatoHamiltonNew Zealand
  3. 3.London South Bank UniversityLondonUK

Personalised recommendations