Journal of Materials Science

, Volume 40, Issue 21, pp 5751–5755 | Cite as

High absorbing CuInS2 thin films growing by oblique angle incidence deposition in presence of thermal gradient

  • F. Chaffar Akkari
  • R. Brini
  • M. Kanzari
  • B. Rezig


Oblique angle deposition technique can generate nanostructures and has attracted the interest of many researchers. In this article we use this technique to investigate the physical properties of obliquely evaporated CuInS2 films deposited onto substrates submitted to a thermal gradient. We show that the correlation between the obliquely angle deposition and the thermal gradient leads to an improvement in the optical properties of the films. Indeed high absorption coefficient (105–3.105 cm−1) in the visible range and near-IR spectral range are reached for the small incident angles. Scanning electron microscopy shows that the films had a microstructure with columns that are progressively inclined as the incident angle was increased.


Polymer Microstructure Absorption Coefficient Optical Property Spectral Range 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. MOTOHIRO and Y. TAGA, Appl. Opt. 28 (1989) 2466.Google Scholar
  2. 2.
    Idem., Thin Solid Films 185 (1990) 137.Google Scholar
  3. 3.
    K. KUWAHARA and S. SHINZATO, ibid. 164 (1988) 165.Google Scholar
  4. 4.
    M. MICHIJIMA, H. HAYACHI, M. KYOHO, T. NAKABAYASHI, T. KOMODA and T. KIRA, IEEE Trans. on Magn., 35(5) (1999).Google Scholar
  5. 5.
    H. EL. SHAIR, M. M. EL-NAHASS, A. M. IBRAHIM, H. S. SOLIMAN, N. M. KHALIL, B. A. KHALIFA and A. A. EL-SHAZLY, J. Mater. Sci. Lett. 9 (1990)540.Google Scholar
  6. 6.
    V. N. VIGDOROVICH, G. A. UKHLINOV, F. CH. KARIMOV and D. M. KRASNOV, Izv. Akad.Nauk SSSR Neorg. Mater. 23 (1987) 1081.Google Scholar
  7. 7.
    HO HUEI-MIN, G. J.-S. GAU and G. THOMAS, J. Appl. Phys. 65 (1989) 3161.Google Scholar
  8. 8.
    K. OKAMOTO, K. ITOH and T. HASHIMOTO, J. Magn. Magn. Mater. 87 (1990) 379.Google Scholar
  9. 9.
    J. M. ALAMEDA, F. CARMONA, F. H. SALAS, L. M. ALVAREZ-PRADO, R. MORALES and G. T. PEREZ, ibid. 154 (1996) 249.Google Scholar
  10. 10.
    S. HAMZAOUI, M. LABRUNE, I. B. PUCHALSKA and C. SELLA, J. Magn. Magn. Mater. 22 (1980) 69.Google Scholar
  11. 11.
    A. LISFI and J. C. LODDER, Phys. Rev. B 63 (2001) 174441.Google Scholar
  12. 12.
    J. M. NIEUWENHUIZEN and H. B. HAANSTRA, Philips Tech. Rev. 27 (1966)87.Google Scholar
  13. 13.
    A. G. DIRKS and H. J. LEAMY, Thin Solid Films 47 (1977) 219.Google Scholar
  14. 14.
    R. N. TRAIT, T. SMY and M. J. BRETT, ibid. 226 (1993) 196.Google Scholar
  15. 15.
    J. KLAER, J. BRUNS, R. HENNINGER, K. SIEMER, R. KLENK, KELLMER and D. BRäUNIG, Semicond. Sci. Technol. 13 (1998) 1456.Google Scholar
  16. 16.
    M. KANZARI, M. ABAAB, B. REZIG and M. BRUNEL, Mater. Res. Bull. 32 (1997) 1009.Google Scholar
  17. 17.
    K. L. CHOPRA, “Thin Film Phenomena” (McGraw-Hill, New York, 1969) p. 721.Google Scholar
  18. 18.
    J. TAUC, in Optical Properties of Solids, edited by F. Abeles (North Holand, Amsterdam, 1970) p. 903.Google Scholar
  19. 19.
    E. A. DAVIS and N. F. MOTT, Phil. Mag. 22 (1970) 903.Google Scholar
  20. 20.
    T. S. MOSS, Optical Properties of Semiconductors, Butterworth, London, 1959.Google Scholar
  21. 21.
    M. KANZARI, M. ABAAB, K. S. ABDELKARIM and B. REZIG, 16th European Photovoltaic Solar Energy Conference, 1–5 May 2000, Glasgow, UK.Google Scholar
  22. 22.
    V. V. KINDYAK, V. F. GREMENONOK, I. V. BODNAR, V. RUD YU and G. A. MADVEDKIN, Thin Solid Films 250 (1994) 33.Google Scholar

Copyright information

© Springer Science + Business Media, Inc 2005

Authors and Affiliations

  • F. Chaffar Akkari
    • 1
  • R. Brini
    • 1
  • M. Kanzari
    • 1
  • B. Rezig
    • 1
  1. 1.Laboratoire de Photovoltaïque et Matériaux Semi-conducteurs -ENIT BP 37TunisTunisie

Personalised recommendations