Advertisement

Journal of Materials Science

, Volume 40, Issue 14, pp 3677–3682 | Cite as

Effect of iron on the setting properties of α-TCP bone cements

  • E. Fernández
  • M. D. Vlad
  • M. Hamcerencu
  • A. Darie
  • R. Torres
  • J. Lôpez
Article

Abstract

New ceramic materials with the ability to set like cement, after mixing a powder phase made of one and/or several of these new reactants and a liquid phase, have been obtained within the ternary system “CaO-P2O5-FeO”. These new reactants have magnetic properties, i.e. cement made from them maintains its magnetic property during the whole setting and hardening. These new materials can be of use, for example, in dental applications, in the treatment of certain types of bone cancer and, in general, in the fields of Biomaterials and Bone Tissue Engineering. In this article, we report on the effect of iron-modified α -tricalcium phosphate, which is the main reactant of commercial calcium phosphate bone cements, on their new setting and hardening properties.

Keywords

Iron Polymer Calcium Phosphate Liquid Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. E. BROWN and L. C. CHOW, Dental Restorative Cement Pastes, US Patent No.: 4,518,430. Priority Data, May 21, (1985).Google Scholar
  2. 2.
    Idem., in A New Calcium Phosphate Water-Setting Cement, edited by P. W. Brown, “Cements Research Progress” (American Ceramic Society, Westerville, Ohio, 1986), p. 351.Google Scholar
  3. 3.
    J. LEMAITRE, A. MIRTCHI and A. MORTIER, Sil. Ind. Ceram. Sci. Tech. 52 (1987) 141.Google Scholar
  4. 4.
    L. C. CHOW, S. TAKAGI, P. D. CONSTANTINO and C. D. FRIEDMAN, Mat. Res. Soc. Symp. Proc. 179 (1991) 3.Google Scholar
  5. 5.
    L. C. CHOW, J. Ceram. Soc. Japan (International Edition) 99 (1992) 927.Google Scholar
  6. 6.
    T. SUGAMA and M. ALLAN, J. Am. Ceram. Soc. 75(8) (1992) 2076.CrossRefGoogle Scholar
  7. 7.
    J. LEMAITRE, Innov. Tech. Biol. Med. 16(1) (1995) 109.Google Scholar
  8. 8.
    E. FERNÁndez, F. J. Gil, S. M. Best, M. P. Ginebra, F. C. M. Driessens and J. A. PLANELL, J. Mater. Sci. Mater. Med. 10 (1999) 169.CrossRefPubMedGoogle Scholar
  9. 9.
    Idem, ibid. 10 (1999) 177.CrossRefPubMedGoogle Scholar
  10. 10.
    M. NILSSON, E. FERNÁndez, S. Sarda, L. Lidgren and J. A. PLANELL, J. Biomed. Mater. Res. 61(4) (2002) 600.CrossRefPubMedGoogle Scholar
  11. 11.
    E. FERNÁndez, F. J. Gil, S. M. Best, M. P. Ginebra, F. C. M. Driessens and J. A. PLANELL, ibid. 41 (1998) 560.CrossRefPubMedGoogle Scholar
  12. 12.
    C. KNABE, F. C. M. DRIESSENS, J. A. PLANELL, R. GILDENHAAR, G. BERGER, D. REIF, R. FITZNER, R. J. RADLANSKI and U. GROSS, ibid. 52 (2000) 498.CrossRefPubMedGoogle Scholar
  13. 13.
    K. OHURA, M. BOHNER, P. HARDOUIN, J. LEMAITRE, G. PASQUIER, B. FLAUTRE and M. C. BLARY, ibid. 30 (1996) 193.CrossRefPubMedGoogle Scholar
  14. 14.
    R. O. C. OREFFO, F. C. M. DRIESSENS, J. A. PLANELL and J. T. TRIFFITT, Biomaterials 19 (1998) 1845.CrossRefPubMedGoogle Scholar
  15. 15.
    F. C. M. DRIESSENS, J. A. PLANELL, M. G. BOLTONG, I. KHAIROUN and M. P. GINEBRA, Proc. Instn. Mech. Engrs. 212H (1998) 427.CrossRefGoogle Scholar
  16. 16.
    E. CHARRIÉRE, J. LEMAITRE and P. H. ZYSSET, Biomaterials 24 (2003) 809.CrossRefPubMedGoogle Scholar
  17. 17.
    S. SARDA, M. NILSSON, M. BALCELLS and E. FERNÁndez, J. Biomed. Mater. Res. 65A (2003) 215.CrossRefGoogle Scholar
  18. 18.
    J. E. BARRALET, L. GROVER, T. GAUNT, A. J. WRIGHT and I. R. GIBSON, Biomaterials 23 (2002) 3063.CrossRefPubMedGoogle Scholar
  19. 19.
    M. BOHNER, Key. Eng. Mater. 192–195 (2001) 765.Google Scholar
  20. 20.
    Idem., Eur. Spine. J. 10 (2001) S114.CrossRefPubMedGoogle Scholar
  21. 21.
    I. KHAIROUN, F. C. M. DRIESSENS, M. G. BOLTONG, J. A. PLANELL and R. WENZ, Biomaterials 20 (1999) 393.CrossRefPubMedGoogle Scholar
  22. 22.
    M. P. GINEBRA, F. C. M. DRIESSENS and J. A. PLANELL, ibid. 25 (2004) 3453.CrossRefPubMedGoogle Scholar
  23. 23.
    Standard Test Method: ASTM C266-89. Time of Setting of Hydraulic Cement Paste by Gillmore Needles, in “Annual Book of ASTM Standards,” Cement, lime, Gypsum (Philadelphia, ASTM, PA, 1993) Vol. 04.01, p. 444.Google Scholar
  24. 24.
    M. P. GINEBRA, E. FERNÁndez, E. A. P. De Maeyer, R. M. H. Verbeeck, M. G. Boltong, J. GINEBRA, F. C. M. DRIESSENS and J. A. PLANELL, J. Dent. Res. 76(4) (1997) 905.PubMedGoogle Scholar
  25. 25.
    E. FERNÁndez, M. P. Ginebra, M. G. Boltong, F. C. M.Driessens, J. Ginebra, E. A. P. De Maeyer, R. M. H. Verbeeck and J. A. PLANELL J. Biomed. Mater. Res. 32 (1996) 367.CrossRefPubMedGoogle Scholar
  26. 26.
    F. C. M. DRIESSENS, in “Bioceramics of Calcium Phosphate,” edited by K. De Groot (CRC Press, Inc., Boca Raton, Florida, 1993) p. 1.Google Scholar
  27. 27.
    H. HOSHINO and M. IWASE, Metall. Mater. Trans. B 27B (1996) 595.Google Scholar
  28. 28.
    E. FERNÁndez Fosfatos de calcio modificados con hierro. Spanish Patent No. P200302342. Universidad Politécnica de Cataluña. Priority Date: 01/10/2003.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • E. Fernández
    • 1
  • M. D. Vlad
    • 1
  • M. Hamcerencu
    • 1
  • A. Darie
    • 1
  • R. Torres
    • 1
  • J. Lôpez
    • 1
  1. 1.Interdepartmental Research Group for the Applied Scientific Collaboration (IRGASC), Division of Bioengineering & BiomaterialsTechnical University of Catalonia (UPC)BarcelonaSpain

Personalised recommendations