Advertisement

Journal of Materials Science

, Volume 40, Issue 6, pp 1353–1357 | Cite as

Counterion effects in cyanine heterojunction photovoltaic devices

  • F. Nüesch
  • A. Faes
  • L. Zuppiroli
  • Fanshun Meng
  • Kongchang Chen
  • He Tian
Photovoltaic Materials and Phenomena Scell-2004

Abstract

We investigated cyanine heterojunction photovoltaic devices using carbocyanine dyes as donors and buckminsterfullerene (C60) as acceptor. In particular, we focused on the influence of cyanine counterions on the photovoltaic device characteristics. It was found that counterions can be displaced in the applied electric field and give rise to important hystereses in the current-voltage characteristics, which are related to charge injection processes at electrode and organic heterointerfaces. Mobile counterions have also a drastic effect on the photocurrent spectrum and are responsible for an important C60 contribution at the organic heterojunction between cyanine and C60. If the counterion is covalently linked to the cyanine dye, the C60 contribution in the blue spectral domain can not be observed.

Keywords

Polymer Applied Electric Field Cyanine Spectral Domain Photovoltaic Device 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. S. SARICIFTCI, L. SMILOWITZ, A. J. HEEGER and F. WUDL, Science 258 (1992) 1474.Google Scholar
  2. 2.
    G. YU, J. GAO, J. C. HUMMELEN, F. WUDL and A. J. HEEGER, Science 270 (1995) 1789.Google Scholar
  3. 3.
    M. GRANSTROM, K. PETRITSCH, A. C. ARIAS, A. LUX, M. R. ANDERSSON and R. H. FRIEND, Nature 395 (1998) 257.CrossRefGoogle Scholar
  4. 4.
    S. E. SHAHEEN, C. J. BRABEC, N. S. SARICIFTCI, F. PADINGER, T. FROMHERZ and J. C. HUMMELEN, Appl. Phys. Lett. 78 (2001) 841.CrossRefGoogle Scholar
  5. 5.
    C. J. BRABEC, S. E. SHAHEEN, C. WINDER, N. S. SARICIFTCI and P. DENK, Appl. Phys. Lett. 80 (2002) 1288.CrossRefGoogle Scholar
  6. 6.
    M. SVENSSON, F. L. ZHANG, S. C. VEENSTRA, W. J. H. VERHEES, J. C. HUMMELEN, J. M. KROON, O. INGANAS and M. R. ANDERSSON, Adv. Mater. 15 (2003) 988.CrossRefGoogle Scholar
  7. 7.
    F. PADINGER, R. S. RITTBERGER and N. S. SARICIFTCI, Adv. Funct. Mater. 13 (2003) 85.CrossRefGoogle Scholar
  8. 8.
    E. PEETERS, P. A. VAN HAL, J. KNOL, C. J. BRABEC, N. S. SARICIFTCI, J. C. HUMMELEN and R. A. J. JANSSEN, J. Phys. Chem. B 104 (2000) 10174.Google Scholar
  9. 9.
    L. SICOT, C. FIORINI, A. LORIN, P. RAIMOND, C. SENTEIN and J. M. NUNZI, Sol. Energy Mater. Sol. Cells 63 (2000) 49.CrossRefGoogle Scholar
  10. 10.
    J. CABANILLAS-GONZALEZ, S. YEATES and D. D. C. BRADLEY, Synth. Met. 139 (2003) 637.CrossRefGoogle Scholar
  11. 11.
    T. H. JAMES, “The Theory of the Photographic Process” (Macmillan, Collier Macmillan, New York, London, 1977).Google Scholar
  12. 12.
    F. MENG, K. CHEN, H. TIAN, L. ZUPPIROLI and F. NUESCH, Appl. Phys. Lett. 82 (2003) 3788.CrossRefGoogle Scholar
  13. 13.
    P. PEUMANS, V. BULOVIC and S. R. FORREST, Appl. Phys. Lett. 76 (2000) 2650.CrossRefGoogle Scholar
  14. 14.
    P. PEUMANS and S. R. FORREST, Appl. Phys. Lett. 79 (2001) 126.CrossRefGoogle Scholar
  15. 15.
    A. YAKIMOV and S. R. FORREST, Appl. Phys. Lett. 80 (2002) 1667.CrossRefGoogle Scholar
  16. 16.
    M. I. DEMCHUK, A. A. ISHCHENKO, V. P. MIKHAILOV and V. I. AVDEEVA, Chem. Phys. Lett. 144 (1988) 99.CrossRefGoogle Scholar
  17. 17.
    H. NUSBAUMER, S. M. ZAKEERUDDIN, J. E. MOSER and M. GRATZEL, Chem.-Eur. J. 9 (2003) 3756.CrossRefGoogle Scholar
  18. 18.
    L. A. ERNST, R. K. GUPTA, R. B. MUJUMDAR and A. S. WAGGONER, Cytometry 10 (1989) 3.CrossRefPubMedGoogle Scholar
  19. 19.
    J. WANG, W. F. CAO, J. H. SU, H. TIAN, Y. H. HUANG and Z. R. SUN, Dyes Pigment. 57 (2003) 171.CrossRefGoogle Scholar
  20. 20.
    R. M. NOYES, J. Am. Chem. Soc.84 (1962) 513.CrossRefGoogle Scholar
  21. 21.
    C. ROGERO, J. I. PASCUAL, J. GOMEZ-HERRERO and A. M. BARO, J. Chem. Phys. 116 (2002) 832.CrossRefGoogle Scholar
  22. 22.
    A. PETR, F. ZHANG, H. PEISERT, M. KNUPFER and L. DUNSCH, Chem. Phys. Lett. 385 (2004) 140.CrossRefGoogle Scholar
  23. 23.
    Q. B. PEI, . G. YU, C. ZHANG, Y. YANG and A. J. HEEGER, Science 269 (1995) 1086.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • F. Nüesch
    • 1
    • 2
  • A. Faes
    • 3
  • L. Zuppiroli
    • 3
  • Fanshun Meng
    • 4
  • Kongchang Chen
    • 4
  • He Tian
    • 4
  1. 1.EMPA, Materials Science and TechnologyDübendorfSwitzerland
  2. 2.Laboratoire d’optoélectronique des matériaux moléculairesInstitut des matériaux, EPFLLausanneSwitzerland
  3. 3.Laboratoire d’optoélectronique des matériaux moléculairesInstitut des matériaux, EPFLLausanneSwitzerland
  4. 4.Institute of Fine ChemicalsEast China University of Science & TechnologyShanghaiPeople’s Republic of China

Personalised recommendations