Journal of Materials Science

, Volume 40, Issue 15, pp 3881–3886 | Cite as

Review Thermal—magnetic investigation of the decomposition of copper oxalate—a precursor for catalysts

  • B. Donkova
  • D. Mehandjiev
Review Paper


A catalyst precursor with highly developed specific surface area of 10 m2/g and a pore volume of 0.02 cm3/g is synthesized. The peculiarities of the system studied related to the structure of the copper oxalate, crystallizing as an anhydrous salt with “zeolitic type” bonded water, its content varying between 0 and 1, are pointed out. The thermal decomposition is followed by investigating the magnetic properties in situ. The results are complementary to the information obtained by DTA/TG studies. The performance of magnetic measurements and the calculation of the magnetic moment μeff in the range from –100 to 300C allow a conclusion to be drawn concerning the coordination of the Cu(II) ions and the change in the oxidation state. In the starting oxalate, Cu(II) is in a tetrahedral-like coordination, which is a result of the strong tetragonal deformation of the octahedral field and of the stronger tendency of the oxalate ion to rotate around the C–C bond axis. The dehydration process does not affect the XRD results, but changes the temperature dependence of μeff due to the change in the Cu(II) coordination. The μeff values during the decomposition process suggest that the proportion Cu(II)-Cu(I) could be varied in the final product by varying the temperature range. By isothermal annealing at 300C for 1 h, an oxide product containing Cu(II)-Cu(I) is synthesized and characterized. The solid phase products corresponding to the separate parts of the DTA/TG curves are: [Cu] → Cu + Cu2O (185–300C), 0.5Cu2O + 2CuO (300–345C), 3CuO (345–400C).


Dehydration Oxalate Thermal Decomposition Pore Volume Cu2O 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. MARTA, O. HOROWITZ and M. ZAHARESCU, Key Eng. Mat. 132–136 (1997) 1239.Google Scholar
  2. 2.
    G. E. SHTER and G. S. GRADER, J. Am. Ceram. Soc. 77 (1994) 1436.Google Scholar
  3. 3.
    K. BERNARD and G. GRITZNER, Phys. C., Supercond. 196(3/4) (1992) 259.Google Scholar
  4. 4.
    CONGKANG XU, YINGKAI LIU, GOUDING XU and GUANGHOU WANG, Mat. Res. Bull. 37 (2002) 2365.Google Scholar
  5. 5.
    M. POPA, J. M. CALDERON-MORENO, D. CRISAN and M. ZAHARESCU, J. Therm. Anal. Calorimetry 62 (2000) 633.Google Scholar
  6. 6.
    T. SPASOVA, M. KHRISTOVA, D. PANAYOTOV and D. MEHANDJIEV, J. Cat. 189 (1999) 43.Google Scholar
  7. 7.
    E. BEKYAROVA and D.MEHANDJIEV, in Proceedings of the 8th International Symposium on Heterogeneous Catalys (Varna, 1996) p. 787.Google Scholar
  8. 8.
    G. BLIZNAKOV, D. MEHANDJIEV and B. DYAKOVA, Kinet. Katal. 9 (1968) 269.Google Scholar
  9. 9.
    D. MEHANDJIEV and E. NICKOLOVA-ZHECHEVA, Thermoch. Acta 51 (1981) 343.Google Scholar
  10. 10.
    E. ZHECHEVA, S. ANGELOV and D. MEHANDJIEV, ibid. 67 (1983) 91.Google Scholar
  11. 11.
    A. M. DONIA, N. R. E. RADWAN and A. A. ATIA, J. Therm. Anal. Calorimetry 61 (2000) 249.Google Scholar
  12. 12.
    V. V. ZELENTZOV and T. G. AMINOV, Dokl. Akad. Nauk SSSR 158 (1964) 1393.Google Scholar
  13. 13.
    O. ASAI, M. KISHITA and M. KUBO, J. Phys. Chem. 63 (1959) 96.Google Scholar
  14. 14.
    L. DUBICKI, Inorg. Chem. 5 (1966) 93.Google Scholar
  15. 15.
    B. N. FIGGIS and D. J. MARTIN, ibid. 5 (1966) 100.Google Scholar
  16. 16.
    J. J. GIRERD, O. KAHN and M. VERDAGUER, ibid. 19 (1980) 274.Google Scholar
  17. 17.
    A. MICHALOWICZ, J. J. GIRERD and J. GOULON, ibid. 18 (1979) 3004.Google Scholar
  18. 18.
    A. GLEIZES F. MAURY and J. GALY, ibid. 19 (1980) 2074.Google Scholar
  19. 19.
    H. FICHTNER- SCHMITTLER, Crystal Res. Technol. 19 (1984) 1225.Google Scholar
  20. 20.
    H. SCHMITTLER, Monatsber. Deut. Acad. Wiss. Berlin 10 (1968) 581.Google Scholar
  21. 21.
    LE VAN MY, G. PERINET and P. BLANCO, Bull. Soc. Chim. France 361 (1969) 361.Google Scholar
  22. 22.
    K. P. PRIBYLOV and D. SH. FAZLULINA, Zh. Inorg. Khim. 14 (1969) 660.Google Scholar
  23. 23.
    K. NAGASE, K. SATO and N. TANAKA, Bull. Chem. Soc. Japan 48 (2) (1975) 439.Google Scholar
  24. 24.
    Y. A. UGAI, Zh. Obshch. Khim. 24 (1954) 1315.Google Scholar
  25. 25.
    R. PRASAD, Thermoch. Acta 406 (2003) 99.Google Scholar
  26. 26.
    D. BROADBENT, J. DOLLIMOR, D. DOLLIMOR and T. A. EVANS, J. Chem. Soc. Faraday Trans. 87(1) (1991) 161.Google Scholar
  27. 27.
    P. PESHEV, G. GYUROV, Y. KHRISTOVA, K. PETROV, D. KOVACHVO, Y. DIMITRIEV, N. NENCHEVA and E. EVLAKHOR, Mater. Res. Bull. 23 (1988) 1765.Google Scholar
  28. 28.
    D. DOLLIMORE, Thermoch. Acta 177 (1991) 59.Google Scholar
  29. 29.
    Idem., ibid. 117 (1987) 331.Google Scholar
  30. 30.
    V. V. BOLDYREV, I. S. NEVANCHEV, JU. I. MIHAYLOV and E. F. HAYRETDINOV, Kinet. Katal. 11 (1970) 367.Google Scholar
  31. 31.
    M. E. BROWN, D. DOLLIMORE and A. K. GALWEY, in “Comprehensive Kinetics, Reactions in the Solid State,” edited by C.H. Bamford and C. F. H. Tipper (Elsevier, Amsterdam 1980) Vol. 22, p. 218.Google Scholar
  32. 32.
    H. J. T. ELLINGHAM, J. Soc. Chem. Ind., (London) 63 (1944) 125.Google Scholar
  33. 33.
    N. J. CARR and A. K. GALWEY, J. Chem. Soc. Faraday Trans 1 84(5) (1988) 1357.Google Scholar
  34. 34.
    F. E. MABBS and D. J. MACHIN, in “Magnetism and Transition Metal Complexes” (Chapman & Hall, London, 1973) p. 153.Google Scholar
  35. 35.
    D. MEHANDJIEV and S. ANGELOV, in “Magnetochemistry of Solid State” (Nauka I Izkustvo, Sofia, 1979) p.116.Google Scholar
  36. 36.
    R. BOCA, in “Theoretical Foundations of Molecular Magnetism” (Elsevier, Amsterdam, Lousanne, New Yok, Oxford, Shannon, Singapore, Tokyo, 1999) p. 504.Google Scholar
  37. 37.
    UPAC (Fiz.Chem.Division), Recomandation 1984, Pure Appl. Chem. 57 (1985) 603.Google Scholar
  38. 38.
    T. TSONCHEVA, S. VANKOVA and D. MEHANDJIEV, Fuel’82(2003) 755.Google Scholar
  39. 39.
    V. RAKIC, V. DONDUR, S. GAJINOV and A. AUROUX, Thermoch. Acta 420 (2004) 51.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Department of Inorganic ChemistryFaculty of Chemistry, University of SofiaSofiaBulgaria
  2. 2.Institute of General and Inorganic ChemistryBulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations