Journal of Materials Science

, Volume 40, Issue 18, pp 4737–4748 | Cite as

Studies on the ionic transport and structural investigations of La0.5Li0.5TiO3 perovskite synthesized by wet chemical methods and the effect of Ce, Zr substitution at Ti site

  • Hrudananda Jena
  • K. V. Govindan Kutty
  • T. R. N. Kutty


La0.5Li0.5TiO3 perovskite was synthesized by various wet chemical methods. By adopting low temperature methods of preparation lithium loss from the material is prevented. La0.5Li0.5TiO3 (LLTO) was formed with cubic symmetry at 1473 K. LLTO was formed at relatively lower temperature by using hydrothermal preparation method. PVA gel-decomposition route yield tetragonal LLTO on annealing the dried gel at 1473 K. By using gel-carbonate route LiTi2O4 minor phase was found to remain even after heat-treatment at 1473 K. The hydroxylation of LLTO was done in deionized water as well as in dilute acetic acid medium. By hydroxylation process incorporation of hydroxyls and leaching out of Li+ was observed from the material. The Li+ concentration of these compositions was examined by AAS. The electrical conductivities of these compositions were measured by dc and ac impedance techniques at elevated temperatures. The activation energies of electrical conduction for these compositions were estimated from the experimental results. The measured activation energy of Li+ conduction is 0.34 eV. Unhydroxylated samples exhibit only Li+ conduction, whereas, the hydroxylated LLTO show proton conductivity at 298–550 K in addition to Li+ conductivity. The effect of Zr or Ce substitution in place of Ti were attempted. La0.5Li0.5ZrO3 Perovskite was not formed; instead pyrochlore phase (La2Zr2O7) along with monoclinic ZrO2 phases was observed above 1173 K; below 1173 K cubic ZrO2 is stable. (La0.5Li0.5)2CeO4 solid solution was formed in the case of Ce substitution at Ti sublattice on heat-treatment up to 1673 K.


Pyrochlore Phase Monoclinic ZrO2 ZrO2 Phase Measured Activation Energy Acetic Acid Medium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. KVIST and A.LUNDEN, Z. Naturforsch 20a (1965) 235.Google Scholar
  2. 2.
    A. R. WEST, J. Appl. Electrochem. 3 (1973) 327.CrossRefGoogle Scholar
  3. 3.
    P. G. BRUCE and A. R. WEST, Mater. Res. Bull. 15 (1980) 117.CrossRefGoogle Scholar
  4. 4.
    H. AONO, E. SUGIMOTO, Y. SADAOKA, N. IMANAKA and G. ADACHI, J. Electrochem. Soc. 136 (1989) L590.Google Scholar
  5. 5.
    L. LATIE, G. VILLENEUVE, D. CONTE and G. L. FLEM, J. Solid State Chem. 51 (1984) 293.CrossRefGoogle Scholar
  6. 6.
    M. OGUNI, Y. INAGUMA, M. IOTH and T. NAKAMURA, Solid State Commun. 91 (1994) 627.CrossRefGoogle Scholar
  7. 7.
    A. G. BELOUS, G. N. NOVITKAYA, S. V. POLYANETSKAYA and Y. I. GORINKOV, Izv. Akad. Nauk. SSSR, Neorg. Mater. 23 (1987) 470.Google Scholar
  8. 8.
    Y. INAGUMA C. LIQUAN, M. ITOH and T. NAKAMURA, Solid State Commun. 86 (1993) 689.CrossRefGoogle Scholar
  9. 9.
    H. KAWAI and J. KUWANO, J. Electrochem. Soc. 141 (1994) L78.Google Scholar
  10. 10.
    Y. INAGUMA C. LIQUAN, M. ITOH and T. NAKAMURA, Solid State Ionics 70/71 (1994) 196.CrossRefGoogle Scholar
  11. 11.
    Y. INAGUMA and M. ITOH, Solid State Ionics 86–88 (1996) 257.CrossRefGoogle Scholar
  12. 12.
    S. STRAMARE, V. THANGADURAI and W. WEPPNER, Chem. Mater. 15 (2003) 3974.Google Scholar
  13. 13.
    S. KUNUGI, Y INAGUMA and M. ITOH, Solid State Ionics 122(1999) 35.CrossRefGoogle Scholar
  14. 14.
    J. BROUS, I. FANKUCHEN and E. BANKS, Acta Crystallogr. 6(1) (1953) 67.CrossRefGoogle Scholar
  15. 15.
    P. V. PATIL and V. C. CHINCHOLKAR, Curr. Sci. 39(2) (1970) 348.Google Scholar
  16. 16.
    P. V. PATIL and V. C. CHINCHOLKAR, Indian J. Chem. Sect. A 16(2) (1978) 161.Google Scholar
  17. 17.
    A. M.VARAPRASAD, A. L. S.MOHAN, D. K. CHAKRAVARTY and A. B. BISWAS, J. Phys. C. Solid State Phys.12(2) (1979) 465.CrossRefGoogle Scholar
  18. 18.
    J. L. FOURQUET, H. DUROY and M. P. C. LOPEZ, J. Solid State Chem. 127 (1996) 283.CrossRefGoogle Scholar
  19. 19.
    C. A. KIRK and A. R. WEST, Solid State Sci. 4 (2002) 1163.CrossRefGoogle Scholar
  20. 20.
    A. M ORRANTIA, S. G. MARTIN and M. A. A. FRANCO, Chem. Mater. 15(2003) 363.CrossRefGoogle Scholar
  21. 21.
    A. D. ROBERTSON, S. G. MARTIN, A. COATS and A. R. WEST, J. Mater. Chem. 5(9) (1995) 1405.CrossRefGoogle Scholar
  22. 22.
    K. KITAOKA, H. KOZUKA, T. HASIMOTO and T. YOKO, J. Mater. Sci. 32(8) (1997) 2063.CrossRefGoogle Scholar
  23. 23.
    T. R. N.KUTTY and P. PADMINI, Mater. Res. Bull. 27 (1992) 945.CrossRefGoogle Scholar
  24. 24.
    H. JENA, K. V. G. KUTTY and T. R. N. KUTTY, Mater. Res. Bull. 39 (2004) 489.CrossRefGoogle Scholar
  25. 25.
    H. JENA, K. V. G. KUTTY and T. R. N. KUTTY, J. Alloys Comp. 350 (2003) 102.CrossRefGoogle Scholar
  26. 26.
    H. JENA, K. V. G. KUTTY and T. R. N. KUTTY, Mater. Chem. Phys. 88 (2004) 167.CrossRefGoogle Scholar
  27. 27.
    J. BROUS, I. FANKUNCHEN and E. BANKS, Acta. Crystall. 6(1) (1953) 67.CrossRefGoogle Scholar
  28. 28.
    J. L. FOURQUET, H. DUROY and M. P. L-CROSINER, J.Solid tate Chem. 127 (1996) 283CrossRefGoogle Scholar
  29. 29.
    M. ABE and K. UCHINO, Mater. Res. Bull. 9 (1974) 147.CrossRefGoogle Scholar
  30. 30.
    L. L. KOCHERGINA, N. B. KHAKHIN, N. V. POROTNIKOV and I. PETROV, Russ. J. Inorg. Chem. 29(4) (1984) 506.Google Scholar
  31. 31.
    FIZ/NIST Inorganic Crystal Structure Database (ICSD) version 1.2.1, Karlsruhe, Germany 2003.Google Scholar
  32. 32.
    R. D. SHANNON, Acta Crystallogr. A32 (1976) 751.Google Scholar
  33. 33.
    M. IOTH, Y. INAGUMA, W. H. JUNG, L. CHEN and T. NAKAMURA, Solid State Ionics 70/71 (1994) 203.CrossRefGoogle Scholar
  34. 34.
    Y. INAGUMA, J. YU, Y. J. SHAN, M. IOTH and T. NAKAMURA, J. Electrochem. Soc. 142 (1995) L8.Google Scholar
  35. 35.
    V. THANGADURAI, A. K. SHUKLA and J. GOPALAKRISHNAN, Chem. Mater. 11 (1999) 835.CrossRefGoogle Scholar
  36. 36.
    J. KINCS and W. S. MARTIN, Phys. Rev. Lett. 76 (1996) 70.CrossRefPubMedGoogle Scholar
  37. 37.
    C. LEÓN, M. L. LUCIacute;A, J. SANTAMARIacute;A, M.A PARIS, J.SANZ and A. VÁREZ, Phys. Rev. B 54 (1996) 184.Google Scholar
  38. 38.
    K. M. NAIRN, M. FORSYTH, M. GREVILLE, D. R. MACFARLANE and M. E SMITH, Solid State Ionics 86–88 (1996) 1397.CrossRefGoogle Scholar
  39. 39.
    O. BOHNKE, C. BOHNKE and J. L. FOURQUET, Solid State Ionics 91(1996) 21.CrossRefGoogle Scholar
  40. 40.
    K. S. COLE and R. H. COLE, J. Chem. Phys. 9 (1941) 341.CrossRefGoogle Scholar
  41. 41.
    J. R. MACDONALD, IN “Impedance Spectroscopy, Emphasizing Solid Materials and Systems” (Wiley Inter-Science, New York, 1987) p. 6.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Hrudananda Jena
    • 1
  • K. V. Govindan Kutty
    • 1
  • T. R. N. Kutty
    • 2
  1. 1.Materials Chemistry DivisionIndira Gandhi Centre for Atomic ResearchKalpakkamIndia
  2. 2.Materials Research CentreIndian Institute of ScienceBangaloreIndia

Personalised recommendations