Advertisement

Journal of Materials Science

, Volume 40, Issue 13, pp 3415–3421 | Cite as

Microstructures and mechanical properties of injection molded 17-4PH stainless steel powder with nickel boride additions

  • H. Ö. Gülsoy
  • S. Salman
Article

Abstract

This paper describes the sintering of an injection molded 17-4 PH stainless steel with additions of nickel boride (NiB), with the aim of producing high mechanical properties. Boron is evaluated as the best sintering enhancing element in terms of densifying the iron-based materials by formation the liquid phase. Sintered density and mechanical properties were increased with the increased amount of NiB while sintering time and temperature were decreased. Sintering to full density and highest mechanical properties were obtained with the addition of 1 wt% NiB at 1280C for 45 min. The formation of borides caused the increase of mechanical properties. This material may therefore find a wider technological application, because of its improved mechanical properties.

Keywords

Microstructure Mechanical Property Stainless Steel Mold Boron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. M. GERMAN, in “Powder Injection Molding” (Metal Powder Industries Federation, Princeton, NJ, 1990) p. 110.Google Scholar
  2. 2.
    R. M. GERMAN and A. BOSE, in “Injection Molding of Metals and Ceramics” (Metal Powder Industries Federation, Princeton, NJ, 1997) p. 11.Google Scholar
  3. 3.
    M. T. MARTNY, D. A. ISSITT, B. HAWORTH and P. J. JAMES, Powder Metall. 31 (1998) 106.Google Scholar
  4. 4.
    H. SUNG, T.K. HA, S. AHN and Y. W. CHANG, J. Mater. Process. Technol. 130 (2002) 321.Google Scholar
  5. 5.
    Y. WU, R. M. GERMAN, D. BLAINE, B. MARX and C. SCHLAEFER, J. Mater. Sci. 37 (2002) 3573.Google Scholar
  6. 6.
    Y. WU, D. BALAINE, B. MARX, C. SCHLAEFER and R. M.GERMAN, Metall. Mater. Trans. 33A (2002) 2185.Google Scholar
  7. 7.
    R. M. GERMAN and D. KUBISH, Int. J. Powder Metall. 29 (1993) 47.Google Scholar
  8. 8.
    H. ZHANG and R. M. GERMAN, in “Proceedings of The 1992 Powder Injection Molding Symposium”, San Francisco, June 1992, edited by P.H. Booker, J. Gaspervich and R.M. German (Metal Powder Industries Federation, Princeton, NJ, 1992) p. 219.Google Scholar
  9. 9.
    Y. S. KWON, Y. WU, P. SURI and R. M GERMAN, Metall. Mater. Trans. 35A (2004) 257.Google Scholar
  10. 10.
    K. KAMADA, M. NAKAMURA and H. HORIE, in “Proceedings of 2000 Powder Metallurgy World Congress”, Kyoto, Japan, October (2000) p. 1021.Google Scholar
  11. 11.
    H. I. SANDEROW, J. D. RUHKAMP and H. A.RODRIGUES, in “Modern Developments in Powder Metallurgy”, (Metal Powder Industries Federation, Princeton, NJ, 1992) Vol. 16, p. 167.Google Scholar
  12. 12.
    T. BABA, H. MIURA, T. HONDA and Y. TOKUYAMA, Adv. Powder Metall. Part. Mater. 6 (1995) 271.Google Scholar
  13. 13.
    J. J. VALENCIA, T. J. MCCABE and H. DONG, Adv. Powder Metall. Part. Mater. 6 (1995) 205.Google Scholar
  14. 14.
    R. TANDON and R. M. GERMAN, Int. J. Powder Metall. 34 (1998) 40.Google Scholar
  15. 15.
    D. S. MADAN and R. M. GERMAN, Adv. Powder Metall. Part. Mater. 1 (1989) 147.Google Scholar
  16. 16.
    C. TOENNES, P. ERNST, G. MEYER and R. M. GERMAN, Adv. Powder Metall. Part. Mater. 2 (1992) 371.Google Scholar
  17. 17.
    A. LAL, R. IACOCCA and R. M. GERMAN, Metall. Mater. Trans. 30A (1999) 2201.Google Scholar
  18. 18.
    J. D. BOLTON and B. S. BECKER, in “Proceedings of 2000 Powder Metallurgy World Congress,” Kyoto, Japan (2000) p. 984.Google Scholar
  19. 19.
    I. H. BAKAN, D. HEANEY and R. M. GERMAN, Powder Metall. 44 (2001) 235.Google Scholar
  20. 20.
    A. MOLINARI, G. STARAFFELLINI, T. PIECZONKA and J. KAZIOR, Int. J. Powder Metall. 34 (1998) 21.Google Scholar
  21. 21.
    M. SARASOLA, T. GOMEZ-ACEBO and F. CASTRO, Acta Mater. 52 (2004) 4615.Google Scholar
  22. 22.
    A. SELECKA, A. SALAK and H. DANNI˙NGER, J. Mater. Process. Technol. 141 (2003) 379.Google Scholar
  23. 23.
    J. LIU, A. CARDAMONE, T. POTTER, R. M. GERMAN and F. J. SEMEL, Powder Metall. 43 (2003) 57.Google Scholar
  24. 24.
    R. M. GERMAN, K. S. HWANG and D. S. MADAN, Powder Metall. Int. 19 (1987) 15.Google Scholar
  25. 25.
    H. O. GULSOY, S. SALMAN and S. OZBEK, J Mater Sci. 39 (2004) 4835.Google Scholar
  26. 26.
    MPIF Standard 50, “Materials Standards for Metal Injected Molded Parts” (Princeton, NJ, MPIF, 2000).Google Scholar
  27. 27.
    MPIF Standard 59, “Materials Standards for Metal Injected Molded Parts” (Princeton, NJ, MPIF, 2001).Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Technical Education Faculty, Material Dep.Marmara UniversityGöztepe, Istanbul

Personalised recommendations