Journal of Materials Science

, Volume 40, Issue 13, pp 3325–3337 | Cite as

Wall slip phenomena in talc-filled polypropylene compounds

  • B. HaworthEmail author
  • S. W. Khan


Slip velocities of unfilled and talc-filled polypropylene (PP) compounds, detectable at the die wall during pressure driven shear flow, have been determined using capillary rheometry. The presence of low molar mass, polar additives is responsible for the detection of wall slip in unmodified PP. Slip velocity increases with shear stress, beyond the critical onset condition. Increasing talc concentration in the PP compounds reduces slip velocity systematically, according to the talc volume fraction, whilst talc particle morphology appears to modify the wall slip behaviour to a greater extent than particle size. In comparison to PP-talc composites based on untreated filler, the presence of surface coatings tends to increase wall slip velocity, at any given shear stress, when the coating concentration exceeds monolayer level. These observations are explained in terms of a mechanism for wall slip in a low cohesive strength interphase, rich in low molar mass amide species, close to the flow boundary. This behaviour has also been modelled using a power law, to define wall slip parameters as a function of shear stress and talc concentration that can be used to enhance process simulation. It is demonstrated that the onset and magnitude of wall slip may be controllable by compound formulation and process conditions, creating exploitation potential to enhance process control and product properties of particle-modified PP composites.


Slip Velocity Wall Slip Slip Parameter Talc Particle Capillary Rheometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. S. KATZ and J. V. MILEWSKI, “Handbook of Fillers for Plastics,” 2nd ed. (Longman, 1995).Google Scholar
  2. 2.
    R. N. ROTHON (ed.), “Particulate Filled Polymer Composites,” (Longman, 1995).Google Scholar
  3. 3.
    R. JOSEPH, M. T. MARTYN, K. E. TANNER, P. D. COATES and W. BONFIELD, Plast. Rubb. & Composites 30 (2001) 197.Google Scholar
  4. 4.
    J. A. BRYDSON, “Flow Properties of Polymer Melts,” 2nd ed., (Godwin, 1981).Google Scholar
  5. 5.
    R. A. WORTH, J. PARNABY and H. A. A. HELMY, Polym. Eng. Sci. 17 (1977) 257.Google Scholar
  6. 6.
    H. POTENTE, M. KURTE and H. RIDDER, Intern. Polym. Proc. XVIII (2003) 115.Google Scholar
  7. 7.
    H. POTENTE and H. RIDDER, Presented at PPS-17 Intnl. Conf., Paper 085, pp. 1–17, Montreal, Canada, (2001).Google Scholar
  8. 8.
    H. J. LARRAZABAL and A. N. HRYMAK, Intern. Polym. Proc. XVII (2002) 44.Google Scholar
  9. 9.
    A. RAMAMURTHY, J. Rheol. 30 (1986) 337.Google Scholar
  10. 10.
    S. G. HATZIKIRIAKOS, C. W. STEWART and J. M. DEALY, Intern. Polym. Proc. VIII (1993) 30.Google Scholar
  11. 11.
    S. G. HATZIKIRIAKOS and J. M. DEALY, Intern. Polym. Proc., VIII (1993) 36.Google Scholar
  12. 12.
    G. MENNING, Kunststoffe 74 (1984) 296.Google Scholar
  13. 13.
    D. A. HILL, T. HASEGAWA and M. M. DENN, J. Rheol. 34 (1990) 891.Google Scholar
  14. 14.
    B. HAWORTH and C. L. RAYMOND, BPF/MOFFIS Intnl. Conf. ‘Eurofillers 97’, Manchester 1997, p. 251.Google Scholar
  15. 15.
    B. HAWORTH, C. L. RAYMOND and I. SUTHERLAND, Polym. Eng. Sci. 40 (2000) 1953.Google Scholar
  16. 16.
    R. JOSEPH, M. T. MARTYN, K. E. TANNER, P. D. COATES and W. BONFIELD, Plast., Rubb. & Composites 30 (2001) 205.Google Scholar
  17. 17.
    S. W. KHAN, PhD Thesis, Loughborough University, 2001.Google Scholar
  18. 18.
    F. N. COGSWELL, Polym. Eng. Sci. 12 (1972) 64.Google Scholar
  19. 19.
    F. N. COGSWELL, Polymer Melt Rheology, 2nd ed., (Woodhead Press, 1994).Google Scholar
  20. 20.
    Y. BOMAL and P. GODARD, Polym. Eng. Sci. 36 (1996) 237.Google Scholar
  21. 21.
    M. S. BOAIRA and C. E. CHAFFEY, Polym. Eng. Sci. 17 (1977) 715.Google Scholar
  22. 22.
    B. HAWORTH and S. JUMPA, Plast. Rubb. & Comp. 28 (1999) 363.Google Scholar
  23. 23.
    B. HAWORTH and I. SUTHERLAND, Presented at PPS-17 Intnl. Conf., Paper 277, (Montreal, Canada, May 2001), p. 1.Google Scholar
  24. 24.
    M. MOONEY, J. Rheol. 2 (1931) 210.Google Scholar
  25. 25.
    H. A. BARNES, J. Non-Newt. Fluid Mech. 56 (1995) 221.Google Scholar
  26. 26.
    I. B. KAZATCHCHKOV, S. G. HATZIKIRIAKOS and C. W. STEWART, Polym. Eng. Sci. 35 (1995) 1864.Google Scholar
  27. 27.
    S. G. HATZIKIRIAKOS and J. M. DEALY, J. Rheol. 36 (1992) 703.Google Scholar
  28. 28.
    Anon, ‘Flow-2000’ Polymer Rheology & Software, Compuplast International Inc.Google Scholar
  29. 29.
    L. L. BLYLER and A. C. HART, Polym. Eng. Sci. 10(4) (1970) 193.Google Scholar
  30. 30.
    D. S. KALIKA and M. M. DENN, J. Rheol. 31 (1987) 815.Google Scholar
  31. 31.
    S. AHN and J. L. WHITE, Intern. Polym. Proc. XVIII (2003) 243.Google Scholar
  32. 32.
    S. AHN and J. L. WHITE, Intern. Polym. Proc., XIX (2004) 21.Google Scholar
  33. 33.
    F. SOLTANI and U. YILMAZER, J. Appl. Polym. Sci. 70 (1998) 515.Google Scholar
  34. 34.
    J. L. LEBLANC, J. P. VILLEMAIRE, B. VERGNES and J. F. AGASSANT, Plast. Rubb. Proc. Appl. 11 (1989) 53.Google Scholar
  35. 35.
    C. MAIER, “Polypropylene: The Definitive User’s Guide and Databook, Plastic Design Library, (New York, 1998).Google Scholar
  36. 36.
    N. ROHSE, P. DEWAEL and I. VAN DE MEEREN, “Presented at VDI Int. Conf., VDI, Bad Homburg, Germany, September 1999.Google Scholar
  37. 37.
    H. HIGUCHI and K. KOYAMA, Intern. Polym. Proc. XVIII (2003) 349.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Institute of Polymer Technology & Materials Engineering (IPTME)Loughborough UniversityLoughboroughUK

Personalised recommendations