Skip to main content
Log in

Wall slip phenomena in talc-filled polypropylene compounds

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Slip velocities of unfilled and talc-filled polypropylene (PP) compounds, detectable at the die wall during pressure driven shear flow, have been determined using capillary rheometry. The presence of low molar mass, polar additives is responsible for the detection of wall slip in unmodified PP. Slip velocity increases with shear stress, beyond the critical onset condition. Increasing talc concentration in the PP compounds reduces slip velocity systematically, according to the talc volume fraction, whilst talc particle morphology appears to modify the wall slip behaviour to a greater extent than particle size. In comparison to PP-talc composites based on untreated filler, the presence of surface coatings tends to increase wall slip velocity, at any given shear stress, when the coating concentration exceeds monolayer level. These observations are explained in terms of a mechanism for wall slip in a low cohesive strength interphase, rich in low molar mass amide species, close to the flow boundary. This behaviour has also been modelled using a power law, to define wall slip parameters as a function of shear stress and talc concentration that can be used to enhance process simulation. It is demonstrated that the onset and magnitude of wall slip may be controllable by compound formulation and process conditions, creating exploitation potential to enhance process control and product properties of particle-modified PP composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. S. KATZ and J. V. MILEWSKI, “Handbook of Fillers for Plastics,” 2nd ed. (Longman, 1995).

  2. R. N. ROTHON (ed.), “Particulate Filled Polymer Composites,” (Longman, 1995).

  3. R. JOSEPH, M. T. MARTYN, K. E. TANNER, P. D. COATES and W. BONFIELD, Plast. Rubb. & Composites 30 (2001) 197.

    Google Scholar 

  4. J. A. BRYDSON, “Flow Properties of Polymer Melts,” 2nd ed., (Godwin, 1981).

  5. R. A. WORTH, J. PARNABY and H. A. A. HELMY, Polym. Eng. Sci. 17 (1977) 257.

    Google Scholar 

  6. H. POTENTE, M. KURTE and H. RIDDER, Intern. Polym. Proc. XVIII (2003) 115.

    Google Scholar 

  7. H. POTENTE and H. RIDDER, Presented at PPS-17 Intnl. Conf., Paper 085, pp. 1–17, Montreal, Canada, (2001).

  8. H. J. LARRAZABAL and A. N. HRYMAK, Intern. Polym. Proc. XVII (2002) 44.

    Google Scholar 

  9. A. RAMAMURTHY, J. Rheol. 30 (1986) 337.

    Google Scholar 

  10. S. G. HATZIKIRIAKOS, C. W. STEWART and J. M. DEALY, Intern. Polym. Proc. VIII (1993) 30.

    Google Scholar 

  11. S. G. HATZIKIRIAKOS and J. M. DEALY, Intern. Polym. Proc., VIII (1993) 36.

    Google Scholar 

  12. G. MENNING, Kunststoffe 74 (1984) 296.

    Google Scholar 

  13. D. A. HILL, T. HASEGAWA and M. M. DENN, J. Rheol. 34 (1990) 891.

    Google Scholar 

  14. B. HAWORTH and C. L. RAYMOND, BPF/MOFFIS Intnl. Conf. ‘Eurofillers 97’, Manchester 1997, p. 251.

  15. B. HAWORTH, C. L. RAYMOND and I. SUTHERLAND, Polym. Eng. Sci. 40 (2000) 1953.

    Google Scholar 

  16. R. JOSEPH, M. T. MARTYN, K. E. TANNER, P. D. COATES and W. BONFIELD, Plast., Rubb. & Composites 30 (2001) 205.

    Google Scholar 

  17. S. W. KHAN, PhD Thesis, Loughborough University, 2001.

  18. F. N. COGSWELL, Polym. Eng. Sci. 12 (1972) 64.

    Google Scholar 

  19. F. N. COGSWELL, Polymer Melt Rheology, 2nd ed., (Woodhead Press, 1994).

  20. Y. BOMAL and P. GODARD, Polym. Eng. Sci. 36 (1996) 237.

    Google Scholar 

  21. M. S. BOAIRA and C. E. CHAFFEY, Polym. Eng. Sci. 17 (1977) 715.

    Google Scholar 

  22. B. HAWORTH and S. JUMPA, Plast. Rubb. & Comp. 28 (1999) 363.

    Google Scholar 

  23. B. HAWORTH and I. SUTHERLAND, Presented at PPS-17 Intnl. Conf., Paper 277, (Montreal, Canada, May 2001), p. 1.

  24. M. MOONEY, J. Rheol. 2 (1931) 210.

    Google Scholar 

  25. H. A. BARNES, J. Non-Newt. Fluid Mech. 56 (1995) 221.

    Google Scholar 

  26. I. B. KAZATCHCHKOV, S. G. HATZIKIRIAKOS and C. W. STEWART, Polym. Eng. Sci. 35 (1995) 1864.

    Google Scholar 

  27. S. G. HATZIKIRIAKOS and J. M. DEALY, J. Rheol. 36 (1992) 703.

    Google Scholar 

  28. Anon, ‘Flow-2000’ Polymer Rheology & Software, Compuplast International Inc.

  29. L. L. BLYLER and A. C. HART, Polym. Eng. Sci. 10(4) (1970) 193.

    Google Scholar 

  30. D. S. KALIKA and M. M. DENN, J. Rheol. 31 (1987) 815.

    Google Scholar 

  31. S. AHN and J. L. WHITE, Intern. Polym. Proc. XVIII (2003) 243.

    Google Scholar 

  32. S. AHN and J. L. WHITE, Intern. Polym. Proc., XIX (2004) 21.

    Google Scholar 

  33. F. SOLTANI and U. YILMAZER, J. Appl. Polym. Sci. 70 (1998) 515.

    Google Scholar 

  34. J. L. LEBLANC, J. P. VILLEMAIRE, B. VERGNES and J. F. AGASSANT, Plast. Rubb. Proc. Appl. 11 (1989) 53.

    Google Scholar 

  35. C. MAIER, “Polypropylene: The Definitive User’s Guide and Databook, Plastic Design Library, (New York, 1998).

  36. N. ROHSE, P. DEWAEL and I. VAN DE MEEREN, “Presented at VDI Int. Conf., VDI, Bad Homburg, Germany, September 1999.

  37. H. HIGUCHI and K. KOYAMA, Intern. Polym. Proc. XVIII (2003) 349.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Haworth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haworth, B., Khan, S.W. Wall slip phenomena in talc-filled polypropylene compounds. J Mater Sci 40, 3325–3337 (2005). https://doi.org/10.1007/s10853-005-0424-2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-005-0424-2

Keywords

Navigation